論文の概要: An Experimental Study of SOTA LiDAR Segmentation Models
- arxiv url: http://arxiv.org/abs/2502.12860v1
- Date: Tue, 18 Feb 2025 13:48:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:57.096627
- Title: An Experimental Study of SOTA LiDAR Segmentation Models
- Title(参考訳): SOTALiDARセグメンテーションモデルの実験的検討
- Authors: Bike Chen, Antti Tikanmäki, Juha Röning,
- Abstract要約: ポイントクラウドセグメンテーション(ポイントクラウドセグメンテーション、英: Point cloud segmentation、PCS)とは、ポイントクラウドの各ポイントを分類することである。
PCSモデルは、大まかにポイント、ボクセル、レンジイメージベースモデルに分けられる。
最先端の点-, ボクセル-, レンジ画像ベースモデル間の総合的な比較は報告されていない。
- 参考スコア(独自算出の注目度): 3.8056056756169316
- License:
- Abstract: Point cloud segmentation (PCS) is to classify each point in point clouds. The task enables robots to parse their 3D surroundings and run autonomously. According to different point cloud representations, existing PCS models can be roughly divided into point-, voxel-, and range image-based models. However, no work has been found to report comprehensive comparisons among the state-of-the-art point-, voxel-, and range image-based models from an application perspective, bringing difficulty in utilizing these models for real-world scenarios. In this paper, we provide thorough comparisons among the models by considering the LiDAR data motion compensation and the metrics of model parameters, max GPU memory allocated during testing, inference latency, frames per second, intersection-over-union (IoU) and mean IoU (mIoU) scores. The experimental results benefit engineers when choosing a reasonable PCS model for an application and inspire researchers in the PCS field to design more practical models for a real-world scenario.
- Abstract(参考訳): ポイントクラウドセグメンテーション(ポイントクラウドセグメンテーション、英: Point cloud segmentation、PCS)とは、ポイントクラウドの各ポイントを分類することである。
このタスクにより、ロボットは3D環境を解析し、自律的に走ることができる。
異なるポイントクラウド表現により、既存のPCSモデルは、大まかにポイント、ボクセル、レンジイメージベースモデルに分けられる。
しかしながら、アプリケーションの観点からは、最先端のポイント-、ボクセル-、レンジ画像ベースモデル間の包括的な比較を報告する研究は行われておらず、現実のシナリオでこれらのモデルを利用するのが困難である。
本稿では、LiDARデータ移動補償とモデルパラメータのメトリクス、テスト中に割り当てられたGPUメモリの最大値、推論レイテンシ、フレーム/秒、交差重畳(IoU)、平均IoU(mIoU)スコアを考慮し、モデル間の徹底的な比較を行う。
実験結果は、アプリケーションに適したPCSモデルを選択し、PCS分野の研究者に現実世界のシナリオのためのより実用的なモデル設計を促す際に、エンジニアに恩恵をもたらす。
関連論文リスト
- Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
我々は、より大規模で正確なクラウドベースモデルに必要に応じて遅延しながら、より小さなモデルのローカル処理効率を活用するハイブリッドエッジクラウドソリューションを設計する。
具体的には、エッジモデルの出力が不確かである場合に予測可能な軽量スイッチャーモデルをトレーニングするための、新しい教師なしデータ生成手法であるDual-Model Distillation(DMD)を提案する。
動作分類タスクの実験結果から,我々のフレームワークは計算オーバーヘッドを少なくするだけでなく,大規模モデルのみを使用する場合と比較して精度も向上することが示された。
論文 参考訳(メタデータ) (2024-10-16T02:06:27Z) - ED-ViT: Splitting Vision Transformer for Distributed Inference on Edge Devices [13.533267828812455]
本稿では,複数のエッジデバイスにまたがる複雑なモデルを効率的に実行するための新しいビジョントランスフォーマー分割フレームワークED-ViTを提案する。
具体的には、Vision Transformerモデルをいくつかのサブモデルに分割し、各サブモデルはデータクラスの特定のサブセットを処理するように調整します。
3つのモデル構造を持つ5つのデータセットに対して広範な実験を行い、エッジデバイスにおける推論遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2024-10-15T14:38:14Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - p$^3$VAE: a physics-integrated generative model. Application to the
pixel-wise classification of airborne hyperspectral images [0.6849746341453253]
物理モデルを統合する生成モデル p$3$VAE を導入する。
航空機搭載ハイパースペクトル画像の画素ワイド分類に3$VAEを適用した。
論文 参考訳(メタデータ) (2022-10-19T09:32:15Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Conditional Generation of Synthetic Geospatial Images from Pixel-level
and Feature-level Inputs [0.0]
画素レベル条件 (PLC) と特徴レベル条件 (FLC) を同時に条件付きで合成する条件生成モデル VAE-Info-cGAN を提案する。
提案モデルでは,道路網の時間的表現のみを条件に,異なる地理的位置をまたいだ様々な形態のマクロアグリゲーションを高精度に生成することができる。
論文 参考訳(メタデータ) (2021-09-11T06:58:19Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
正確で、堅牢で、効率的で、一般化可能で、エンドツーエンドのトレーニングが可能なモデルを提案する。
精度を向上させるために,2つの軽量モジュールを提案する。
DQInitは、インプットからデコーダのクエリを動的に初期化し、複数のデコーダ層を持つものと同じ精度でモデルを実現する。
QAMemは、共有するクエリではなく、それぞれのクエリに別々のメモリ値を割り当てることで、低解像度のフィーチャーマップ上のクエリの識別能力を高めるように設計されている。
論文 参考訳(メタデータ) (2021-05-27T13:51:42Z) - Discrete Point Flow Networks for Efficient Point Cloud Generation [36.03093265136374]
生成モデルは3次元形状とその統計的バリエーションをモデル化するのに有効であることが証明されている。
任意の大きさの3次元点雲を生成するために,フローの正規化に基づく潜在変数モデルを導入する。
単一ビュー形状再構成では、最先端のボクセル、ポイントクラウド、メッシュベースの手法と同等の結果が得られる。
論文 参考訳(メタデータ) (2020-07-20T14:48:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。