論文の概要: Using Prompts to Guide Large Language Models in Imitating a Real Person's Language Style
- arxiv url: http://arxiv.org/abs/2410.03848v1
- Date: Fri, 4 Oct 2024 18:30:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 15:50:43.480194
- Title: Using Prompts to Guide Large Language Models in Imitating a Real Person's Language Style
- Title(参考訳): プロンプトを用いて実人の言語スタイルを模倣する大規模言語モデル
- Authors: Ziyang Chen, Stylios Moscholios,
- Abstract要約: 本研究では,同じゼロショットプロンプトの指導の下で,3つの異なる大言語モデルの言語スタイルの模倣能力を比較する。
また、3つの異なるプロンプトによって個別にガイドされる場合、同じ大きな言語モデルの模倣能力を比較する。
Llama 3にTree-of-Thoughts (ToT) Promptingメソッドを適用することで、実際の人の言語スタイルを持つ会話型AIが作られた。
- 参考スコア(独自算出の注目度): 8.653992214883726
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs), such as GPT series and Llama series have demonstrated strong capabilities in natural language processing, contextual understanding, and text generation. In recent years, researchers are trying to enhance the abilities of LLMs in performing various tasks, and numerous studies have proved that well-designed prompts can significantly improve the performance of LLMs on these tasks. This study compares the language style imitation ability of three different large language models under the guidance of the same zero-shot prompt. It also involves comparing the imitation ability of the same large language model when guided by three different prompts individually. Additionally, by applying a Tree-of-Thoughts (ToT) Prompting method to Llama 3, a conversational AI with the language style of a real person was created. In this study, three evaluation methods were used to evaluate LLMs and prompts. The results show that Llama 3 performs best at imitating language styles, and that the ToT prompting method is the most effective to guide it in imitating language styles. Using a ToT framework, Llama 3 was guided to interact with users in the language style of a specific individual without altering its core parameters, thereby creating a text-based conversational AI that reflects the language style of the individual.
- Abstract(参考訳): GPTシリーズやLlamaシリーズのような大規模言語モデル(LLM)は、自然言語処理、文脈理解、テキスト生成において強力な能力を示している。
近年、研究者は様々なタスクの実行においてLLMの能力を高めようとしており、よく設計されたプロンプトがこれらのタスクにおけるLLMのパフォーマンスを大幅に改善できることを多くの研究が証明している。
本研究では,同じゼロショットプロンプトの指導の下で,3つの異なる大言語モデルの言語スタイルの模倣能力を比較する。
また、3つの異なるプロンプトによって個別にガイドされる場合、同じ大きな言語モデルの模倣能力を比較する。
さらに、Llama 3にTree-of-Thoughts (ToT) Promptingメソッドを適用することで、実際の人の言語スタイルを持つ会話型AIが作られた。
本研究では,LSMとプロンプトの評価に3つの評価手法を用いた。
その結果,Llama 3は言語スタイルの模倣に最適であり,ToTプロンプト法が最も効果的であることがわかった。
ToTフレームワークを使用して、Llama 3は、コアパラメータを変更することなく、特定の個人の言語スタイルでユーザと対話するようにガイドされ、それによって、個人の言語スタイルを反映したテキストベースの会話型AIを生成する。
関連論文リスト
- Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
GPT-3やLLaMAのような英語中心のLarge Language Models (LLM)は、多言語タスクを実行する素晴らしい能力を示している。
本稿では,シーケンスラベリングタスクにおいて,これらのLLMの言語構造理解を探索するための分解的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T15:15:39Z) - Helping Language Models Learn More: Multi-dimensional Task Prompt for
Few-shot Tuning [36.14688633670085]
本稿では,タスク関連オブジェクト,要約,タスク記述情報に基づく多次元タスクプロンプト学習手法MTPromptを提案する。
提案するMTPromptは,適切なプロンプトを自動構築し,検索することで,いくつかのサンプル設定と5つの異なるデータセットに対して最適な結果が得られる。
論文 参考訳(メタデータ) (2023-12-13T10:00:44Z) - Establishing Vocabulary Tests as a Benchmark for Evaluating Large
Language Models [2.7013338932521416]
我々は,大言語モデル(LLM)の性能を評価する貴重なツールとして,語彙テストの復活を提唱する。
2つの言語にまたがる2つの語彙テスト形式を用いて7つのLSMを評価し,その語彙的知識の驚くべきギャップを明らかにする。
論文 参考訳(メタデータ) (2023-10-23T08:45:12Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Meta-Tuning LLMs to Leverage Lexical Knowledge for Generalizable Language Style Understanding [24.355564722047244]
現在の大規模言語モデルは、微調整なしでいくつかの言語スタイルを捉えるのに苦労していることを示す。
我々は,LLMを代表語彙に基づいてメタトレーニングし,それらが微調整されていない新しいスタイルを認識できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-24T00:17:36Z) - Interpretable Unified Language Checking [42.816372695828306]
本稿では,人間と機械生成言語の両方に対して,解釈可能で統一された言語チェック(UniLC)手法を提案する。
ファクトチェック, ステレオタイプ検出, ヘイトスピーチ検出タスクの組み合わせにより, LLM は高い性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-04-07T16:47:49Z) - LERT: A Linguistically-motivated Pre-trained Language Model [67.65651497173998]
本稿では,3種類の言語特徴を学習する事前学習型言語モデルLERTを提案する。
我々は,中国における10のNLUタスクについて広範な実験を行い,LERTが大きな改善をもたらすことを示す実験結果を得た。
論文 参考訳(メタデータ) (2022-11-10T05:09:16Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - Read Like Humans: Autonomous, Bidirectional and Iterative Language
Modeling for Scene Text Recognition [80.446770909975]
言語知識はシーンのテキスト認識に非常に有益である。
エンドツーエンドのディープネットワークで言語規則を効果的にモデル化する方法はまだ研究の課題です。
シーンテキスト認識のための自律的双方向反復型ABINetを提案する。
論文 参考訳(メタデータ) (2021-03-11T06:47:45Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
言語モデル(LM)は、事実の知識を捉えるのに驚くほど成功した。
しかし、LMの実際の表現能力の研究は、ほぼ間違いなく英語で行われている。
我々は23の語型的多様言語に対するクローゼスタイルプローブのベンチマークを作成する。
論文 参考訳(メタデータ) (2020-10-13T05:29:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。