論文の概要: Approximate Tree Completion and Learning-Augmented Algorithms for Metric Minimum Spanning Trees
- arxiv url: http://arxiv.org/abs/2502.12993v1
- Date: Tue, 18 Feb 2025 16:13:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:05:21.398277
- Title: Approximate Tree Completion and Learning-Augmented Algorithms for Metric Minimum Spanning Trees
- Title(参考訳): 計量最小スパンニング木に対する近似木補完と学習拡張アルゴリズム
- Authors: Nate Veldt, Thomas Stanley, Benjamin W. Priest, Trevor Steil, Keita Iwabuchi, T. S. Jayram, Geoffrey Sanders,
- Abstract要約: 任意の距離空間における$n$ポイントの最小スパンニングツリー(MST)を見つけることは、階層的クラスタリングや他の多くのMLタスクの基本的なプリミティブである。
まず,(1)実践的手法を用いて不連結成分の森を発見し,(2)森林の不連結成分を分布木に接続するためのエッジの小さな重み集合を見出した。
2番目のステップを最適に解くには、まだ$Omega(n2)$時間が必要ですが、サブクワッドラティックな2.62近似アルゴリズムを提供しています。
- 参考スコア(独自算出の注目度): 7.2092555743847155
- License:
- Abstract: Finding a minimum spanning tree (MST) for $n$ points in an arbitrary metric space is a fundamental primitive for hierarchical clustering and many other ML tasks, but this takes $\Omega(n^2)$ time to even approximate. We introduce a framework for metric MSTs that first (1) finds a forest of disconnected components using practical heuristics, and then (2) finds a small weight set of edges to connect disjoint components of the forest into a spanning tree. We prove that optimally solving the second step still takes $\Omega(n^2)$ time, but we provide a subquadratic 2.62-approximation algorithm. In the spirit of learning-augmented algorithms, we then show that if the forest found in step (1) overlaps with an optimal MST, we can approximate the original MST problem in subquadratic time, where the approximation factor depends on a measure of overlap. In practice, we find nearly optimal spanning trees for a wide range of metrics, while being orders of magnitude faster than exact algorithms.
- Abstract(参考訳): 任意の距離空間における$n$点に対する最小スパンニングツリー(MST)を見つけることは、階層的クラスタリングや他の多くのMLタスクの基本的な原始であるが、さらに近似するのには$\Omega(n^2)$時間を要する。
筆者らは,(1)実用的ヒューリスティックス(Huristics)を用いて解離した成分の森を発見し,(2)森林の解離した成分を散在木に接続するための端の小さな重み集合を見出した。
2番目のステップを最適に解くには、まだ$\Omega(n^2)$時間を要することを証明しているが、2.62-近似アルゴリズムを提供する。
学習強化アルゴリズムの精神において、ステップ(1)で見つかった森林が最適MSTと重なり合うと、近似係数が重なりの尺度に依存する4次時間で元のMST問題を近似できることが示される。
実際には、精度の高いアルゴリズムよりも桁違いに高速でありながら、幅広いメトリクスに対してほぼ最適なスパンニングツリーを見つけることができる。
関連論文リスト
- Fast unsupervised ground metric learning with tree-Wasserstein distance [14.235762519615175]
教師なしの地上距離学習アプローチが導入されました
一つの有望な選択肢はワッサーシュタイン特異ベクトル(WSV)であり、特徴量とサンプルの間の最適な輸送距離を同時に計算する際に現れる。
木にサンプルや特徴を埋め込むことでWSV法を強化し,木-ワッサーシュタイン距離(TWD)を計算することを提案する。
論文 参考訳(メタデータ) (2024-11-11T23:21:01Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - On Computing Optimal Tree Ensembles [7.424944196676223]
ランダム林や、より一般的には(決定ノブレイクダッシュ-)ツリーアンサンブルは、分類と回帰の方法として広く使われている。
最近のアルゴリズムの進歩は、そのサイズや深さなどの様々な測定に最適な決定木を計算することができる。
2つの新しいアルゴリズムと対応する下位境界を提供する。
論文 参考訳(メタデータ) (2023-06-07T13:30:43Z) - Solving Projected Model Counting by Utilizing Treewidth and its Limits [23.81311815698799]
予測モデルカウント(PMC)を解く新しいアルゴリズムを提案する。
いわゆる「ツリー幅」が最も顕著な構造パラメータの1つであるという観測から着想を得て,本アルゴリズムは入力インスタンスの一次グラフの小さなツリー幅を利用する。
論文 参考訳(メタデータ) (2023-05-30T17:02:07Z) - GBMST: An Efficient Minimum Spanning Tree Clustering Based on
Granular-Ball Computing [78.92205914422925]
多粒度グラニュラバルと最小スパンニングツリー(MST)を組み合わせたクラスタリングアルゴリズムを提案する。
粒度が粗い粒状ボールを構築し,さらに粒状ボールとMSTを用いて「大規模優先度」に基づくクラスタリング手法を実装した。
いくつかのデータセットの実験結果は、アルゴリズムの威力を示している。
論文 参考訳(メタデータ) (2023-03-02T09:04:35Z) - Unbiased and Efficient Sampling of Dependency Trees [0.0]
ほとんどのツリーバンクは、すべての有効な依存ツリーがROOTノードから出てくる単一のエッジを持つ必要がある。
Zmigrodらは最近、単一ルート依存ツリーの分布から置き換えることなくサンプリングするアルゴリズムを提案している。
我々は、Wilson-RCを置換したサンプリングアルゴリズムが実際にバイアスを受けていることを示す。
論文 参考訳(メタデータ) (2022-05-25T09:57:28Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
ノード重み付きグラフが与えられたとき、ノード重みが最大となる独立した(相互に非隣接な)ノードの集合を見つける。
このアプリケーションで放送されるグラフの中には、数十万のノードと数億のエッジを持つ大きなものもあります。
我々は,不規則なランダム化適応検索フレームワークにおいてメタヒューリスティックな新しい局所探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-28T21:34:16Z) - Exact and Approximate Hierarchical Clustering Using A* [51.187990314731344]
クラスタリングのA*探索に基づく新しいアプローチを紹介します。
A*と新しいエンフォレリスデータ構造を組み合わせることで、禁止的に大きな検索空間を克服します。
実験により,本手法は粒子物理利用事例や他のクラスタリングベンチマークにおいて,ベースラインよりもかなり高品質な結果が得られることを示した。
論文 参考訳(メタデータ) (2021-04-14T18:15:27Z) - Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and
Hierarchical Spatial Clustering [6.4805900740861]
HDBSCAN$*$のための私達のアルゴリズムの仕事そしてスペースを減らすために十分分離の新しい概念を導入します。
我々のアルゴリズムは理論的に効率的であることを示す: 彼らは逐次対応の作業(操作数)と多対数深さ(並列時間)を持っている。
48コアマシンを用いた大規模実世界および合成データセットの実験により、我々の最速のアルゴリズムは11.13-55.89x、既存の並列アルゴリズムを少なくとも桁違いに上回った。
論文 参考訳(メタデータ) (2021-04-02T16:05:00Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
本稿では,エッジファクター,非プロジェクティブ・スパンニングツリーモデルにおいて,一階期待と二階期待の重要なケースに対する統一アルゴリズムを提案する。
我々のアルゴリズムは勾配と期待の基本的な関係を利用しており、効率的なアルゴリズムを導出することができる。
論文 参考訳(メタデータ) (2020-08-29T14:58:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。