論文の概要: $k$-Graph: A Graph Embedding for Interpretable Time Series Clustering
- arxiv url: http://arxiv.org/abs/2502.13049v1
- Date: Tue, 18 Feb 2025 16:59:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:14.503067
- Title: $k$-Graph: A Graph Embedding for Interpretable Time Series Clustering
- Title(参考訳): $k$-Graph: 解釈可能な時系列クラスタリングのためのグラフ埋め込み
- Authors: Paul Boniol, Donato Tiano, Angela Bonifati, Themis Palpanas,
- Abstract要約: $k$-Graphは時系列クラスタリングの解釈可能性を高めるために作られた教師なしのメソッドである。
我々の実験結果によると、$k$-Graphは現在の最先端の時系列クラスタリングアルゴリズムよりも精度が高いことがわかった。
- 参考スコア(独自算出の注目度): 21.763409747687348
- License:
- Abstract: Time series clustering poses a significant challenge with diverse applications across domains. A prominent drawback of existing solutions lies in their limited interpretability, often confined to presenting users with centroids. In addressing this gap, our work presents $k$-Graph, an unsupervised method explicitly crafted to augment interpretability in time series clustering. Leveraging a graph representation of time series subsequences, $k$-Graph constructs multiple graph representations based on different subsequence lengths. This feature accommodates variable-length time series without requiring users to predetermine subsequence lengths. Our experimental results reveal that $k$-Graph outperforms current state-of-the-art time series clustering algorithms in accuracy, while providing users with meaningful explanations and interpretations of the clustering outcomes.
- Abstract(参考訳): 時系列クラスタリングは、ドメインにまたがる多様なアプリケーションにおいて、大きな課題となる。
既存のソリューションの顕著な欠点は、限定的な解釈可能性にある。
このギャップに対処するために、我々の研究は、時系列クラスタリングにおける解釈可能性を高めるために明示的に作られた教師なしのメソッドである$k$-Graphを提示した。
時系列列のグラフ表現を利用すると、$k$-Graphは異なる列の長さに基づいて複数のグラフ表現を構成する。
この機能は、ユーザがサブシーケンス長を事前に決定することなく、可変長の時系列を許容する。
我々の実験結果によると、$k$-Graphは、クラスタリング結果の有意義な説明と解釈をユーザに提供するとともに、現在の最先端の時系列クラスタリングアルゴリズムを精度良く上回っている。
関連論文リスト
- Unified and Dynamic Graph for Temporal Character Grouping in Long Videos [31.192044026127032]
ビデオ時間的キャラクタグループ化は、ビデオ内の主要なキャラクタの出現モーメントを、そのアイデンティティに応じて特定する。
最近の研究は、教師なしクラスタリングからグラフベースのクラスタリングへと進化してきた。
時間的文字グループ化のための統一動的グラフ(UniDG)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-27T13:22:55Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - Clustering of Time-Varying Graphs Based on Temporal Label Smoothness [28.025212175496964]
本稿では,クラスタラベルが時間とともにスムーズに変化するという仮定に基づいて,時間変化グラフのノードクラスタリング手法を提案する。
提案手法の有効性を検証するために,合成および実世界の時間変化グラフの実験を行った。
論文 参考訳(メタデータ) (2023-05-11T05:20:41Z) - Are uGLAD? Time will tell! [4.005044708572845]
条件独立グラフ(CI)を用いた多変量時系列セグメンテーションのための新しい手法を提案する。
CIグラフは、ノード間の部分的相関を表す確率的グラフィカルモデルである。
身体活動モニタリングデータを用いて実験結果を実証した。
論文 参考訳(メタデータ) (2023-03-21T07:46:28Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
グラフマッチングアルゴリズムは、クエリグラフの埋め込みをデータグラフGに列挙する。
マッチング順序は、これらのバックトラックに基づくサブグラフマッチングアルゴリズムの時間効率において重要な役割を果たす。
本稿では,Reinforcement Learning (RL) と Graph Neural Networks (GNN) 技術を適用して,グラフマッチングアルゴリズムの高品質なマッチング順序を生成する。
論文 参考訳(メタデータ) (2022-01-25T00:10:03Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。