論文の概要: Graphint: Graph-based Time Series Clustering Visualisation Tool
- arxiv url: http://arxiv.org/abs/2503.07698v1
- Date: Mon, 10 Mar 2025 17:20:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:42:05.397130
- Title: Graphint: Graph-based Time Series Clustering Visualisation Tool
- Title(参考訳): Graphint: グラフベースの時系列クラスタリング可視化ツール
- Authors: Paul Boniol, Donato Tiano, Angela Bonifati, Themis Palpanas,
- Abstract要約: Graphintは、$k$-Graph方法論に基づいた革新的なシステムである。
堅牢な時系列クラスタリングアルゴリズムと、比較と解釈のための対話的なツールを統合する。
- 参考スコア(独自算出の注目度): 21.763409747687348
- License:
- Abstract: With the exponential growth of time series data across diverse domains, there is a pressing need for effective analysis tools. Time series clustering is important for identifying patterns in these datasets. However, prevailing methods often encounter obstacles in maintaining data relationships and ensuring interpretability. We present Graphint, an innovative system based on the $k$-Graph methodology that addresses these challenges. Graphint integrates a robust time series clustering algorithm with an interactive tool for comparison and interpretation. More precisely, our system allows users to compare results against competing approaches, identify discriminative subsequences within specified datasets, and visualize the critical information utilized by $k$-Graph to generate outputs. Overall, Graphint offers a comprehensive solution for extracting actionable insights from complex temporal datasets.
- Abstract(参考訳): 様々な領域にわたる時系列データの指数関数的増加に伴い、効果的な分析ツールの必要性が高まっている。
時系列クラスタリングは、これらのデータセットのパターンを特定する上で重要である。
しかし、一般的な手法は、データ関係の維持と解釈可能性の確保において、しばしば障害に遭遇する。
我々は、これらの課題に対処する$k$-Graph方法論に基づいた革新的なシステムGraphintを紹介する。
Graphintは、堅牢な時系列クラスタリングアルゴリズムと、比較と解釈のための対話ツールを統合している。
より正確には、ユーザが競合するアプローチと比較し、特定データセット内の識別サブシーケンスを識別し、$k$-Graphで出力を生成する重要な情報を可視化することができる。
全体として、Graphintは複雑な時間データセットから実行可能な洞察を抽出するための包括的なソリューションを提供する。
関連論文リスト
- $k$-Graph: A Graph Embedding for Interpretable Time Series Clustering [21.763409747687348]
$k$-Graphは時系列クラスタリングの解釈可能性を高めるために作られた教師なしのメソッドである。
我々の実験結果によると、$k$-Graphは現在の最先端の時系列クラスタリングアルゴリズムよりも精度が高いことがわかった。
論文 参考訳(メタデータ) (2025-02-18T16:59:51Z) - Predictive Query-based Pipeline for Graph Data [0.0]
グラフ埋め込み技術は大規模グラフの解析と処理を単純化する。
GraphSAGE、Node2Vec、FastRPといったいくつかのアプローチは、グラフの埋め込みを生成する効率的な方法を提供する。
埋め込みをノード特性として保存することにより、異なる埋め込み技術を比較し、それらの有効性を評価することができる。
論文 参考訳(メタデータ) (2024-12-13T08:03:57Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
複合ノードメッセージパッシングネットワーク(CoNo-Link)は、超長いフレーム情報を関連付けるためのフレームワークである。
オブジェクトをノードとして扱う従来の方法に加えて、このネットワークは情報インタラクションのためのノードとしてオブジェクトトラジェクトリを革新的に扱う。
我々のモデルは、合成ノードを追加することで、より長い時間スケールでより良い予測を学習することができる。
論文 参考訳(メタデータ) (2023-12-14T14:00:30Z) - Unified and Dynamic Graph for Temporal Character Grouping in Long Videos [31.192044026127032]
ビデオ時間的キャラクタグループ化は、ビデオ内の主要なキャラクタの出現モーメントを、そのアイデンティティに応じて特定する。
最近の研究は、教師なしクラスタリングからグラフベースのクラスタリングへと進化してきた。
時間的文字グループ化のための統一動的グラフ(UniDG)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-27T13:22:55Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
少数のアンカー点とテンソルシャッテンp-ノルム最小化による効率的な多重グラフ学習モデルを提案する。
具体的には、各ビューに対してアンカーグラフを用いて、隠蔽かつトラクタブルな大きなグラフを構築する。
本研究では,データサイズと線形にスケールする効率的なアルゴリズムを開発し,提案したモデルを解く。
論文 参考訳(メタデータ) (2021-06-29T13:10:56Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
グラフ学習は、複数のビューから統一的で堅牢なグラフを学ぶ能力を備えた、マルチビュークラスタリングのための有望なテクニックとして登場した。
本稿では,統合目的関数における多視点一貫性と多視点不整合を同時にモデル化する,新しい多視点グラフ学習フレームワークを提案する。
12のマルチビューデータセットに対する実験は、提案手法の堅牢性と効率性を実証した。
論文 参考訳(メタデータ) (2020-08-24T06:11:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。