AI-Assisted Decision Making with Human Learning
- URL: http://arxiv.org/abs/2502.13062v1
- Date: Tue, 18 Feb 2025 17:08:21 GMT
- Title: AI-Assisted Decision Making with Human Learning
- Authors: Gali Noti, Kate Donahue, Jon Kleinberg, Sigal Oren,
- Abstract summary: In many cases, despite the algorithm's superior performance, the final decision remains in human hands.
This paper studies such AI-assisted decision-making settings, where the human learns through repeated interactions with the algorithm.
We observe that the discrepancy between the algorithm's model and the human's model creates a fundamental tradeoff.
- Score: 8.598431584462944
- License:
- Abstract: AI systems increasingly support human decision-making. In many cases, despite the algorithm's superior performance, the final decision remains in human hands. For example, an AI may assist doctors in determining which diagnostic tests to run, but the doctor ultimately makes the diagnosis. This paper studies such AI-assisted decision-making settings, where the human learns through repeated interactions with the algorithm. In our framework, the algorithm -- designed to maximize decision accuracy according to its own model -- determines which features the human can consider. The human then makes a prediction based on their own less accurate model. We observe that the discrepancy between the algorithm's model and the human's model creates a fundamental tradeoff. Should the algorithm prioritize recommending more informative features, encouraging the human to recognize their importance, even if it results in less accurate predictions in the short term until learning occurs? Or is it preferable to forgo educating the human and instead select features that align more closely with their existing understanding, minimizing the immediate cost of learning? This tradeoff is shaped by the algorithm's time-discounted objective and the human's learning ability. Our results show that optimal feature selection has a surprisingly clean combinatorial characterization, reducible to a stationary sequence of feature subsets that is tractable to compute. As the algorithm becomes more "patient" or the human's learning improves, the algorithm increasingly selects more informative features, enhancing both prediction accuracy and the human's understanding. Notably, early investment in learning leads to the selection of more informative features than a later investment. We complement our analysis by showing that the impact of errors in the algorithm's knowledge is limited as it does not make the prediction directly.
Related papers
- Integrating Expert Judgment and Algorithmic Decision Making: An Indistinguishability Framework [12.967730957018688]
We introduce a novel framework for human-AI collaboration in prediction and decision tasks.
Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to any feasible predictive algorithm.
arXiv Detail & Related papers (2024-10-11T13:03:53Z) - Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies [0.43981305860983716]
We show how to compare the performance of three alternative decision-making systems--human-alone, human-with-AI, and AI-alone.
We find that the risk assessment recommendations do not improve the classification accuracy of a judge's decision to impose cash bail.
arXiv Detail & Related papers (2024-03-18T01:04:52Z) - Human Expertise in Algorithmic Prediction [16.104330706951004]
We introduce a novel framework for incorporating human expertise into algorithmic predictions.
Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to predictive algorithms.
arXiv Detail & Related papers (2024-02-01T17:23:54Z) - Auditing for Human Expertise [12.967730957018688]
We develop a statistical framework under which we can pose this question as a natural hypothesis test.
We propose a simple procedure which tests whether expert predictions are statistically independent from the outcomes of interest.
A rejection of our test thus suggests that human experts may add value to any algorithm trained on the available data.
arXiv Detail & Related papers (2023-06-02T16:15:24Z) - Refining neural network predictions using background knowledge [68.35246878394702]
We show we can use logical background knowledge in learning system to compensate for a lack of labeled training data.
We introduce differentiable refinement functions that find a corrected prediction close to the original prediction.
This algorithm finds optimal refinements on complex SAT formulas in significantly fewer iterations and frequently finds solutions where gradient descent can not.
arXiv Detail & Related papers (2022-06-10T10:17:59Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
We study a learning-augmented variant of the classical, notoriously hard online graph exploration problem.
We propose an algorithm that naturally integrates predictions into the well-known Nearest Neighbor (NN) algorithm.
arXiv Detail & Related papers (2021-12-10T10:02:31Z) - The Information Geometry of Unsupervised Reinforcement Learning [133.20816939521941]
Unsupervised skill discovery is a class of algorithms that learn a set of policies without access to a reward function.
We show that unsupervised skill discovery algorithms do not learn skills that are optimal for every possible reward function.
arXiv Detail & Related papers (2021-10-06T13:08:36Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
We study the fundamental online $k$-server problem in a learning-augmented setting.
We show that our algorithm achieves for any k an almost optimal consistency-robustness tradeoff.
arXiv Detail & Related papers (2021-03-02T11:04:33Z) - Indecision Modeling [50.00689136829134]
It is important that AI systems act in ways which align with human values.
People are often indecisive, and especially so when their decision has moral implications.
arXiv Detail & Related papers (2020-12-15T18:32:37Z) - The Future AI in Healthcare: A Tsunami of False Alarms or a Product of
Experts? [3.8244083622687306]
I argue that most, if not all, of these publications or commercial algorithms make several fundamental errors.
We should vote many algorithms together, weighted by their overall performance, their independence from each other, and a set of features that define the context.
arXiv Detail & Related papers (2020-07-20T21:56:36Z) - A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous
Algorithmic Scores [85.12096045419686]
We study the adoption of an algorithmic tool used to assist child maltreatment hotline screening decisions.
We first show that humans do alter their behavior when the tool is deployed.
We show that humans are less likely to adhere to the machine's recommendation when the score displayed is an incorrect estimate of risk.
arXiv Detail & Related papers (2020-02-19T07:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.