Improving Clinical Question Answering with Multi-Task Learning: A Joint Approach for Answer Extraction and Medical Categorization
- URL: http://arxiv.org/abs/2502.13108v1
- Date: Tue, 18 Feb 2025 18:20:37 GMT
- Title: Improving Clinical Question Answering with Multi-Task Learning: A Joint Approach for Answer Extraction and Medical Categorization
- Authors: Priyaranjan Pattnayak, Hitesh Laxmichand Patel, Amit Agarwal, Bhargava Kumar, Srikant Panda, Tejaswini Kumar,
- Abstract summary: We introduce a Multi-Task Learning framework that jointly trains CQA models for both answer extraction and medical categorization.
In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports.
Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization.
- Score: 2.380499804323775
- License:
- Abstract: Clinical Question Answering (CQA) plays a crucial role in medical decision-making, enabling physicians to extract relevant information from Electronic Medical Records (EMRs). While transformer-based models such as BERT, BioBERT, and ClinicalBERT have demonstrated state-of-the-art performance in CQA, existing models lack the ability to categorize extracted answers, which is critical for structured retrieval, content filtering, and medical decision support. To address this limitation, we introduce a Multi-Task Learning (MTL) framework that jointly trains CQA models for both answer extraction and medical categorization. In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports. This categorization enables more structured and interpretable outputs, making clinical QA models more useful in real-world healthcare settings. We evaluate our approach on emrQA, a large-scale dataset for medical question answering. Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization. These findings suggest that MTL not only enhances CQA performance but also introduces an effective mechanism for categorization and structured medical information retrieval.
Related papers
- CMQCIC-Bench: A Chinese Benchmark for Evaluating Large Language Models in Medical Quality Control Indicator Calculation [10.647090420719666]
We propose an open-source Chinese electronic medical records (EMRs)-based dataset (CMQCIC-Bench) for the Medical Quality Control Indicator Calculation (MQCIC)
We propose a semi-automatic method to enhance the rule representation and a Clinical Facts-based Inferential Rule (CF-IR) method that disentangles the clinical fact verification and inferential rule reasoning actions.
Our findings reveal that CF-IR outperforms Chain-of-Thought methods in MQCIC tasks.
arXiv Detail & Related papers (2025-02-17T11:40:48Z) - LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
Large Language Models (LLMs) face significant challenges in medical question answering.
We propose a novel approach incorporating similar case generation within a multi-agent medical question-answering system.
Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data.
arXiv Detail & Related papers (2024-12-31T19:55:45Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.
We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
arXiv Detail & Related papers (2024-04-25T15:51:06Z) - Large Language Models for Multi-Choice Question Classification of Medical Subjects [0.2020207586732771]
We train deep neural networks for multi-class classification of questions into the inferred medical subjects.
We show the capability of AI and LLMs in particular for multi-classification tasks in the Healthcare domain.
arXiv Detail & Related papers (2024-03-21T17:36:08Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - K-QA: A Real-World Medical Q&A Benchmark [12.636564634626422]
We construct K-QA, a dataset containing 1,212 patient questions originating from real-world conversations held on K Health.
We employ a panel of in-house physicians to answer and manually decompose a subset of K-QA into self-contained statements.
We evaluate several state-of-the-art models, as well as the effect of in-context learning and medically-oriented augmented retrieval schemes.
arXiv Detail & Related papers (2024-01-25T20:11:04Z) - PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering [56.25766322554655]
Medical Visual Question Answering (MedVQA) presents a significant opportunity to enhance diagnostic accuracy and healthcare delivery.
We propose a generative-based model for medical visual understanding by aligning visual information from a pre-trained vision encoder with a large language model.
We train the proposed model on PMC-VQA and then fine-tune it on multiple public benchmarks, e.g., VQA-RAD, SLAKE, and Image-Clef 2019.
arXiv Detail & Related papers (2023-05-17T17:50:16Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation.
We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias.
We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning.
arXiv Detail & Related papers (2022-12-26T14:28:24Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.