論文の概要: HedgeAgents: A Balanced-aware Multi-agent Financial Trading System
- arxiv url: http://arxiv.org/abs/2502.13165v1
- Date: Mon, 17 Feb 2025 04:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:59:00.261326
- Title: HedgeAgents: A Balanced-aware Multi-agent Financial Trading System
- Title(参考訳): HedgeAgents: バランスの取れたマルチエージェント金融取引システム
- Authors: Xiangyu Li, Yawen Zeng, Xiaofen Xing, Jin Xu, Xiangmin Xu,
- Abstract要約: 大規模言語モデル(LLM)とエージェントベースのモデルは、リアルタイム市場分析と取引決定において有望な可能性を秘めている。
急激な減少や頻繁な変動に直面すると、依然として顕著な-20%の損失を経験する。
本稿では,ロバストネスの戦略を強化することを目的とした,革新的なマルチエージェントシステムであるHedgeAgentsを紹介する。
- 参考スコア(独自算出の注目度): 20.48571388047213
- License:
- Abstract: As automated trading gains traction in the financial market, algorithmic investment strategies are increasingly prominent. While Large Language Models (LLMs) and Agent-based models exhibit promising potential in real-time market analysis and trading decisions, they still experience a significant -20% loss when confronted with rapid declines or frequent fluctuations, impeding their practical application. Hence, there is an imperative to explore a more robust and resilient framework. This paper introduces an innovative multi-agent system, HedgeAgents, aimed at bolstering system robustness via ``hedging'' strategies. In this well-balanced system, an array of hedging agents has been tailored, where HedgeAgents consist of a central fund manager and multiple hedging experts specializing in various financial asset classes. These agents leverage LLMs' cognitive capabilities to make decisions and coordinate through three types of conferences. Benefiting from the powerful understanding of LLMs, our HedgeAgents attained a 70% annualized return and a 400% total return over a period of 3 years. Moreover, we have observed with delight that HedgeAgents can even formulate investment experience comparable to those of human experts (https://hedgeagents.github.io/).
- Abstract(参考訳): 金融市場における自動取引の増加に伴い、アルゴリズムによる投資戦略がますます顕著になっている。
LLM(Large Language Models)とエージェントベースのモデルは、リアルタイム市場分析やトレーディング決定において有望な可能性を秘めているが、急激な減少や頻繁な変動に直面した場合でも、大きな-20%の損失を被り、実用的な応用を妨げている。
したがって、より堅牢でレジリエントなフレームワークを探求する義務がある。
本稿では,HedgeAgentsという,'hedging'戦略によるシステムの堅牢性向上を目的とした,革新的なマルチエージェントシステムを提案する。
このバランスの良いシステムでは、HedgeAgentsは中央のファンドマネジャーと、さまざまな金融資産クラスに特化した複数のヘッジ専門家で構成されている。
これらのエージェントはLLMの認知能力を活用し、3種類の会議を通じて意思決定と調整を行う。
LLMの強力な理解により、私たちのHedgeAgentsは年間リターンの70%を達成し、合計リターンの400%を3年間にわたって達成しました。
さらに、HedgeAgentsが人間の専門家に匹敵する投資経験(https://hedgeagents.github.io/)を定式化できるのを楽しみにしています。
関連論文リスト
- Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research [17.43528917594047]
本研究では,金融投資研究における意思決定の促進を目的とした,新たなマルチエージェントコラボレーションシステムを提案する。
ダウ・ジョーンズ指数にリストされた30社のうち、2023年のSEC10-Kの形式を分析して、ファンダメンタルズ、市場のセンチメント、リスク分析という3つのサブタスクに注目します。
この結果から,AIエージェントのタスク設定によるパフォーマンスの大幅な変化が判明した。
論文 参考訳(メタデータ) (2024-11-07T15:28:20Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
論文 参考訳(メタデータ) (2024-10-14T17:57:02Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
ポートフォリオ管理とアルファマイニングにおける定量株式投資のための新しい枠組みを提案する。
本稿では,大規模言語モデル(LLM)がマルチモーダル財務データからアルファ因子を抽出する枠組みを提案する。
中国株式市場の実験は、この枠組みが最先端のベースラインを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2024-09-10T07:42:28Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
ポートフォリオ全体のリターンと潜在的なリスクの間のトレードオフのバランスをとるために,マルチエージェント強化学習(RL)アプローチを提案する。
得られた実験結果から,提案したMASAフレームワークの有効性が明らかとなった。
論文 参考訳(メタデータ) (2024-02-01T11:31:26Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
既存のディープラーニング手法はランダムなシードやネットワークルータに敏感であることを示す。
本稿では,成功した取引会社の効果的なボトムアップトレーディング戦略設計ワークフローを模倣する,量的投資のための新しい2段階混成(MoE)フレームワークを提案する。
AlphaMixは4つの財務基準において、最先端のベースラインを大きく上回っている。
論文 参考訳(メタデータ) (2022-06-07T08:58:00Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
本研究では,エージェント種別のメタゲームに対して,エプシロン・ナッシュ平衡である安定解を求めることができることを示す。
私たちのアプローチはより柔軟で、例えば市場クリア化のような非現実的な仮定は必要ありません。
当社のアプローチは、実際のビジネスサイクルモデル、DGEモデルの代表的なファミリー、100人の労働者消費者、10社の企業、税金と再分配を行う政府で実証しています。
論文 参考訳(メタデータ) (2022-01-03T17:00:17Z) - MAPS: Multi-agent Reinforcement Learning-based Portfolio Management
System [23.657021288146158]
マルチエージェント強化学習に基づくポートフォリオ管理システム(MAPS)を提案する。
MAPSは、各エージェントが独立した「投資者」であり、独自のポートフォリオを作成する協調システムである。
米国の12年間の市場データによる実験の結果、MAPSはシャープ比でベースラインの大半を上回っている。
論文 参考訳(メタデータ) (2020-07-10T14:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。