論文の概要: Fundus2Globe: Generative AI-Driven 3D Digital Twins for Personalized Myopia Management
- arxiv url: http://arxiv.org/abs/2502.13182v1
- Date: Tue, 18 Feb 2025 10:02:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:58:48.059585
- Title: Fundus2Globe: Generative AI-Driven 3D Digital Twins for Personalized Myopia Management
- Title(参考訳): Fundus2Globe: パーソナライズされた近視症管理のためのAI駆動型3Dデジタル双生児
- Authors: Danli Shi, Bowen Liu, Zhen Tian, Yue Wu, Jiancheng Yang, Ruoyu Chen, Bo Yang, Ou Xiao, Mingguang He,
- Abstract要約: マイオピアは2050年までに世界の50%の人口に影響を与えると予測されており、視覚喪失の主な原因となっている。
眼球形状に基づくバイオマーカーの最近の理解にはMRI(MRI)が必要である
Fundus2Globeは、患者固有の3D眼球を2Dカラーの眼球写真から合成する最初のAIフレームワークである。
- 参考スコア(独自算出の注目度): 17.197828632845198
- License:
- Abstract: Myopia, projected to affect 50% population globally by 2050, is a leading cause of vision loss. Eyes with pathological myopia exhibit distinctive shape distributions, which are closely linked to the progression of vision-threatening complications. Recent understanding of eye-shape-based biomarkers requires magnetic resonance imaging (MRI), however, it is costly and unrealistic in routine ophthalmology clinics. We present Fundus2Globe, the first AI framework that synthesizes patient-specific 3D eye globes from ubiquitous 2D color fundus photographs (CFPs) and routine metadata (axial length, spherical equivalent), bypassing MRI dependency. By integrating a 3D morphable eye model (encoding biomechanical shape priors) with a latent diffusion model, our approach achieves submillimeter accuracy in reconstructing posterior ocular anatomy efficiently. Fundus2Globe uniquely quantifies how vision-threatening lesions (e.g., staphylomas) in CFPs correlate with MRI-validated 3D shape abnormalities, enabling clinicians to simulate posterior segment changes in response to refractive shifts. External validation demonstrates its robust generation performance, ensuring fairness across underrepresented groups. By transforming 2D fundus imaging into 3D digital replicas of ocular structures, Fundus2Globe is a gateway for precision ophthalmology, laying the foundation for AI-driven, personalized myopia management.
- Abstract(参考訳): マイオピアは2050年までに世界の50%の人口に影響を与えると予測されており、視覚喪失の主な原因となっている。
病理組織学的近視眼では、視力低下を伴う合併症の進行と密接に関連し、特異な形状の分布を示す。
近年の眼球形状に基づくバイオマーカーの理解にはMRI(MRI)が必要であるが、日常的な眼科クリニックでは高価で非現実的である。
ユビキタス2Dカラーファンドス写真(CFP)と定期メタデータ(軸長,球面等価)から患者固有の3D眼球を合成し,MRI依存をバイパスする最初のAIフレームワークであるFundus2Globeを提案する。
生体力学的形状を符号化した3次元変形眼モデルと潜伏拡散モデルを組み合わせることにより, 後眼解剖の再構築を効率的に行うためのサブミリ精度を実現する。
Fundus2Globeは、CFPsの視力低下病変(例えば、スタフィラマ)がMRIによる3次元形状異常とどのように相関しているかをユニークに定量化し、臨床医は屈折率の変化に応じて後部部分の変化をシミュレートすることができる。
外的検証は、その堅牢な生成性能を示し、表現不足なグループ間の公平性を保証する。
2Dファウンダスイメージングを3Dデジタルの眼構造のレプリカに変換することで、Fundus2Globeは精密眼科の入り口となり、AI駆動のパーソナライズされた近視管理の基礎を築いた。
関連論文リスト
- Is an Ultra Large Natural Image-Based Foundation Model Superior to a Retina-Specific Model for Detecting Ocular and Systemic Diseases? [15.146396276161937]
RETFoundおよびDINOv2モデルは眼疾患検出および全身性疾患予知タスクのために評価された。
RETFoundは、心不全、梗塞、虚血性脳梗塞の予測において、すべてのDINOv2モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2025-02-10T09:31:39Z) - Spatial-aware Transformer-GRU Framework for Enhanced Glaucoma Diagnosis
from 3D OCT Imaging [1.8416014644193066]
本稿では3次元光コヒーレンス・トモグラフィー(OCT)画像の診断値を利用した新しいディープラーニングフレームワークを提案する。
我々は、リッチスライスな特徴抽出のための網膜データに事前学習された視覚変換器と、スライス間空間依存性をキャプチャするための双方向Gated Recurrent Unitを統合する。
大規模データセットに対する実験結果から,提案手法の最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-08T22:25:15Z) - Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples [6.381153836752796]
3次元組織画像処理のためのボリュームブロック解析(MAMBA)のためのModality-Agnostic Multiple Case Learningを提案する。
3Dブロックベースのアプローチでは、MAMBAは2Dの単一スライスによる予測よりも優れた受信特性曲線(AUC)の0.86と0.74の領域を達成している。
さらに, 組織体積が大きくなることで予後が向上し, サンプリングバイアスによるリスク予測のばらつきが軽減されることが示唆された。
論文 参考訳(メタデータ) (2023-07-27T14:48:02Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - nnUNet RASPP for Retinal OCT Fluid Detection, Segmentation and
Generalisation over Variations of Data Sources [25.095695898777656]
我々は、複数のデバイスベンダーの画像間で一貫した高パフォーマンスを持つnnUNetの2つの変種を提案する。
このアルゴリズムはMICCAI 2017 RETOUCHチャレンジデータセットで検証された。
実験の結果,我々のアルゴリズムは最先端のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2023-02-25T23:47:23Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z) - Geometric Deep Learning to Identify the Critical 3D Structural Features
of the Optic Nerve Head for Glaucoma Diagnosis [52.06403518904579]
視神経頭(ONH)は緑内障の発生・進展過程において複雑で深い3次元形態変化を呈する。
我々は3D ONH点群から緑内障の診断にPointNetと動的グラフ畳み込みニューラルネットワーク(DGCNN)を用いた。
幅広い眼科疾患の診断・予後に臨床応用される可能性も高い。
論文 参考訳(メタデータ) (2022-04-14T12:52:10Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
加齢関連黄斑変性症(AMD)は、先進国、特に60歳以上の人々において、視覚障害の最も一般的な原因である。
近年のディープラーニングの発展は、完全に自動化された診断フレームワークの開発にユニークな機会を与えている。
様々な大きさの受容場を用いて病理を識別できる多スケール畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2021-10-06T18:20:58Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。