論文の概要: Personalized 3D Myocardial Infarct Geometry Reconstruction from Cine MRI with Explicit Cardiac Motion Modeling
- arxiv url: http://arxiv.org/abs/2507.15194v1
- Date: Mon, 21 Jul 2025 02:43:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.233406
- Title: Personalized 3D Myocardial Infarct Geometry Reconstruction from Cine MRI with Explicit Cardiac Motion Modeling
- Title(参考訳): 心臓運動モデルを用いた局所的3次元心筋梗塞画像再構成
- Authors: Yilin Lyu, Fan Yang, Xiaoyue Liu, Zichen Jiang, Joshua Dillon, Debbie Zhao, Martyn Nash, Charlene Mauger, Alistair Young, Ching-Hui Sia, Mark YY Chan, Lei Li,
- Abstract要約: 本稿では,高忠実度3D心筋梗塞形状の自動再構成のための新しい枠組みを提案する。
具体的には,多視点シネMRIから自動深部形状適合モデルであるbiv-meを用いて,まず4次元心室メッシュを再構成する。
そこで我々は,この動的幾何学における運動パターンを明示的に利用し,梗塞領域の局所化を図るために,梗塞再建モデルであるCMotion2Infarct-Netを設計する。
- 参考スコア(独自算出の注目度): 7.573784171306414
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate representation of myocardial infarct geometry is crucial for patient-specific cardiac modeling in MI patients. While Late gadolinium enhancement (LGE) MRI is the clinical gold standard for infarct detection, it requires contrast agents, introducing side effects and patient discomfort. Moreover, infarct reconstruction from LGE often relies on sparsely sampled 2D slices, limiting spatial resolution and accuracy. In this work, we propose a novel framework for automatically reconstructing high-fidelity 3D myocardial infarct geometry from 2D clinically standard cine MRI, eliminating the need for contrast agents. Specifically, we first reconstruct the 4D biventricular mesh from multi-view cine MRIs via an automatic deep shape fitting model, biv-me. Then, we design a infarction reconstruction model, CMotion2Infarct-Net, to explicitly utilize the motion patterns within this dynamic geometry to localize infarct regions. Evaluated on 205 cine MRI scans from 126 MI patients, our method shows reasonable agreement with manual delineation. This study demonstrates the feasibility of contrast-free, cardiac motion-driven 3D infarct reconstruction, paving the way for efficient digital twin of MI.
- Abstract(参考訳): MI患者における心筋梗塞形状の正確な表現は、患者特異的心モデルに不可欠である。
後期ガドリニウム増強(LGE)MRIは梗塞検出のための臨床金基準であるが、造影剤、副作用、患者の不快感が要求される。
さらに、LGEによる梗塞再建は、空間分解能と精度を制限し、スパースサンプリングされた2Dスライスに依存していることが多い。
本研究では, 造影剤を必要とせず, 高忠実度3D心筋梗塞形状を2次元標準シネMRIから自動再構成する新しい枠組みを提案する。
具体的には,多視点シネMRIから自動深部形状適合モデルであるbiv-meを用いて,まず4次元心室メッシュを再構成する。
そこで我々は,この動的幾何学における運動パターンを明示的に利用し,梗塞領域の局所化を図るために,梗塞再建モデルであるCMotion2Infarct-Netを設計する。
126例のMRI像を205例に評価し,手指の脱線術と妥当な一致を示した。
本研究は、MIの効率的なデジタル双生児への道を開くために、コントラストフリーで心臓運動駆動型3D梗塞再建の可能性を示す。
関連論文リスト
- S2MNet: Speckle-To-Mesh Net for Three-Dimensional Cardiac Morphology Reconstruction via Echocardiogram [8.28431711854234]
ほとんどの臨床心エコー図は2次元像のみを提供し、3次元の心臓解剖と機能を完全に評価する能力を制限する。
本研究では,日常的に取得した2次元心エコー図の6つのスライスを統合することで,連続的かつ高忠実な3次元心臓モデルを再構築する深層学習フレームワークS2MNetを提案する。
論文 参考訳(メタデータ) (2025-05-09T14:56:48Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
現在の商用デジタルサブトラクション・アンジオグラフィー(DSA)システムは通常、再構築を行うために数百のスキャンビューを要求する。
スパース・ビューDSA画像のダイナミックな血流と不十分な入力は,3次元血管再建作業において重要な課題である。
本稿では,時間に依存しない容器確率場を用いてこの問題を効果的に解くことを提案する。
論文 参考訳(メタデータ) (2024-05-17T11:23:33Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
心臓画像の分野では, 深層学習(DL)を用いたシネ・マルチコントラスト再建法を提案する。
提案手法は画像領域とk空間領域の両方を最適化し,高い再構成精度を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:46:11Z) - DMCVR: Morphology-Guided Diffusion Model for 3D Cardiac Volume
Reconstruction [33.59945107137013]
現在の心臓MRIによる再建技術は、平面解像度が制限された2Dである。
本稿では,高解像度2次元画像とそれに対応する3次元再構成ボリュームを合成する3次元心容積再構成のための形態誘導拡散モデルDMCVRを提案する。
論文 参考訳(メタデータ) (2023-08-18T00:48:30Z) - Multi-class point cloud completion networks for 3D cardiac anatomy
reconstruction from cine magnetic resonance images [4.1448595037512925]
マルチクラスの心臓解剖学的メッシュを再構築できる新しい完全自動表面再構成パイプラインを提案する。
その鍵となるコンポーネントは、マルチクラスポイントクラウド補完ネットワーク(PCCN)である。
論文 参考訳(メタデータ) (2023-07-17T14:52:52Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z) - Enhanced 3D Myocardial Strain Estimation from Multi-View 2D CMR Imaging [0.0]
CMR SSFP画像からの複数方向からの相補的変位情報を組み合わせた3次元心筋ひずみ推定法を提案する。
商用ソフトウェア(セグメント,メドビソ)に実装された2次元非剛性登録アルゴリズムを用いて,短軸,4角,2角のビューのセットを登録する。
次に, 運動3方向の補間関数を作成し, 患者固有の左室の四面体メッシュ表現を変形させる。
論文 参考訳(メタデータ) (2020-09-25T22:47:50Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。