The "Who'', "What'', and "How'' of Responsible AI Governance: A Systematic Review and Meta-Analysis of (Actor, Stage)-Specific Tools
- URL: http://arxiv.org/abs/2502.13294v1
- Date: Tue, 18 Feb 2025 21:31:31 GMT
- Title: The "Who'', "What'', and "How'' of Responsible AI Governance: A Systematic Review and Meta-Analysis of (Actor, Stage)-Specific Tools
- Authors: Blaine Kuehnert, Rachel M. Kim, Jodi Forlizzi, Hoda Heidari,
- Abstract summary: We present a systematic review and comprehensive meta-analysis of the current state of responsible AI tools.
Our findings reveal significant imbalances across the stakeholder roles and lifecycle stages addressed.
Despite the myriad of frameworks and tools for responsible AI, it remains unclear emphwho within an organization and emphwhen in the AI lifecycle a tool applies.
- Score: 10.439710801147033
- License:
- Abstract: The implementation of responsible AI in an organization is inherently complex due to the involvement of multiple stakeholders, each with their unique set of goals and responsibilities across the entire AI lifecycle. These responsibilities are often ambiguously defined and assigned, leading to confusion, miscommunication, and inefficiencies. Even when responsibilities are clearly defined and assigned to specific roles, the corresponding AI actors lack effective tools to support their execution. Toward closing these gaps, we present a systematic review and comprehensive meta-analysis of the current state of responsible AI tools, focusing on their alignment with specific stakeholder roles and their responsibilities in various AI lifecycle stages. We categorize over 220 tools according to AI actors and stages they address. Our findings reveal significant imbalances across the stakeholder roles and lifecycle stages addressed. The vast majority of available tools have been created to support AI designers and developers specifically during data-centric and statistical modeling stages while neglecting other roles such as institutional leadership, deployers, end-users, and impacted communities, and stages such as value proposition and deployment. The uneven distribution we describe here highlights critical gaps that currently exist in responsible AI governance research and practice. Our analysis reveals that despite the myriad of frameworks and tools for responsible AI, it remains unclear \emph{who} within an organization and \emph{when} in the AI lifecycle a tool applies. Furthermore, existing tools are rarely validated, leaving critical gaps in their usability and effectiveness. These gaps provide a starting point for researchers and practitioners to create more effective and holistic approaches to responsible AI development and governance.
Related papers
- Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.
Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.
We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
Agentic Artificial Intelligence (AI) can autonomously pursue long-term goals, make decisions, and execute complex, multi-turn.
This transition from advisory roles to proactive execution challenges established legal, economic, and creative frameworks.
We explore challenges in three interrelated domains: creativity and intellectual property, legal and ethical considerations, and competitive effects.
arXiv Detail & Related papers (2025-02-01T03:14:59Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Towards AI Accountability Infrastructure: Gaps and Opportunities in AI Audit Tooling [1.841662059101602]
Audits are critical mechanisms for identifying the risks and limitations of deployed artificial intelligence (AI) systems.
We map the current ecosystem of available AI audit tools.
We conclude that resources are lacking to adequately support the full scope of needs for many AI audit practitioners.
arXiv Detail & Related papers (2024-02-27T19:52:54Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Towards a Responsible AI Metrics Catalogue: A Collection of Metrics for
AI Accountability [28.67753149592534]
This study bridges the accountability gap by introducing our effort towards a comprehensive metrics catalogue.
Our catalogue delineates process metrics that underpin procedural integrity, resource metrics that provide necessary tools and frameworks, and product metrics that reflect the outputs of AI systems.
arXiv Detail & Related papers (2023-11-22T04:43:16Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
We propose guidelines for evaluating the (moral and) ethical consequences of affectively-aware AI.
We propose a multi-stakeholder analysis framework that separates the ethical responsibilities of AI Developers vis-a-vis the entities that deploy such AI.
We end with recommendations for researchers, developers, operators, as well as regulators and law-makers.
arXiv Detail & Related papers (2021-07-29T03:57:53Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Where Responsible AI meets Reality: Practitioner Perspectives on
Enablers for shifting Organizational Practices [3.119859292303396]
This paper examines and seeks to offer a framework for analyzing how organizational culture and structure impact the effectiveness of responsible AI initiatives in practice.
We present the results of semi-structured qualitative interviews with practitioners working in industry, investigating common challenges, ethical tensions, and effective enablers for responsible AI initiatives.
arXiv Detail & Related papers (2020-06-22T15:57:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.