論文の概要: Language Models Can Predict Their Own Behavior
- arxiv url: http://arxiv.org/abs/2502.13329v1
- Date: Tue, 18 Feb 2025 23:13:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:02:12.456400
- Title: Language Models Can Predict Their Own Behavior
- Title(参考訳): 言語モデルは自身の振る舞いを予測できる
- Authors: Dhananjay Ashok, Jonathan May,
- Abstract要約: 入力トークンの内部表現だけでは、次のトークンだけでなく、出力シーケンス全体に対する最終的な振る舞いを正確に予測できることがよく示されます。
この能力を活用して、内部状態のプローブを学習して、早期警告(および終了)システムを作成します。
具体的には、探査機がLMの振る舞いを確実に見積もることができれば、システムはトークンを全く生成せず、代わりに推定された振る舞いを返す。
- 参考スコア(独自算出の注目度): 28.80639362933004
- License:
- Abstract: Autoregressive Language Models output text by sequentially predicting the next token to generate, with modern methods like Chain-of-Thought (CoT) prompting achieving state-of-the-art reasoning capabilities by scaling the number of generated tokens. However, are there times when we can infer how the model will behave (e.g. abstain from answering a question) early in the computation, making generation unnecessary? We show that internal representation of input tokens alone can often precisely predict, not just the next token, but eventual behavior over the entire output sequence. We leverage this capacity and learn probes on internal states to create early warning (and exit) systems. Specifically, if the probes can confidently estimate the way the LM is going to behave, then the system will avoid generating tokens altogether and return the estimated behavior instead. On 27 text classification datasets spanning five different tasks, we apply this method to estimate the eventual answer of an LM under CoT prompting, reducing inference costs by 65% (average) while suffering an accuracy loss of no more than 1.4% (worst case). We demonstrate the potential of this method to pre-emptively identify when a model will abstain from answering a question, fail to follow output format specifications, or give a low-confidence response. We explore the limits of this capability, showing that probes generalize to unseen datasets, but perform worse when LM outputs are longer and struggle to predict properties that require access to knowledge that the models themselves lack. Encouragingly, performance scales with model size, suggesting applicability to the largest of models
- Abstract(参考訳): 自動回帰言語モデルは、生成する次のトークンを逐次予測することで、テキストを出力する。
しかし、計算の早い段階でモデルがどのように振る舞うか(例えば、質問に答えるのを控えるなど)を推測でき、生成を不要にすることがあるだろうか?
入力トークンの内部表現だけでは、次のトークンだけでなく、出力シーケンス全体に対する最終的な振る舞いを正確に予測できることがよく示されます。
この能力を活用して、内部状態のプローブを学習して、早期警告(および終了)システムを作成します。
具体的には、探査機がLMの振る舞いを確実に見積もることができれば、システムはトークンを全く生成せず、代わりに推定された振る舞いを返す。
5つのタスクにまたがる27のテキスト分類データセットにおいて、この手法を用いて、予測コストを65%削減し、精度が1.4%未満の精度の損失を被る(不安な場合)。
提案手法は,モデルが質問に答えることを避けたり,出力フォーマットの仕様に従わなかったり,信頼度が低い応答を与えたりするかどうかを事前に判断する可能性を示す。
この能力の限界を探求し、プローブは未知のデータセットに一般化するが、LM出力が長く、モデル自体が欠落している知識へのアクセスを必要とする特性を予測するのに苦労すると、さらに悪化することを示す。
モデルサイズによるパフォーマンススケールを拡大し、最大のモデルに適用可能であることを示唆する
関連論文リスト
- Computational-Statistical Tradeoffs at the Next-Token Prediction Barrier: Autoregressive and Imitation Learning under Misspecification [50.717692060500696]
対数損失を伴う次のトーケン予測は自己回帰シーケンスモデリングの基盤となる。
次トーケン予測は、適度な誤差増幅を表す$C=tilde O(H)$を達成するために堅牢にすることができる。
C=e(log H)1-Omega(1)$。
論文 参考訳(メタデータ) (2025-02-18T02:52:00Z) - Predicting the Performance of Black-box LLMs through Self-Queries [60.87193950962585]
大規模言語モデル(LLM)は、AIシステムにおいてますます頼りになってきている。
本稿では、フォローアッププロンプトを使用し、異なる応答の確率を表現として捉え、ブラックボックス方式でLCMの特徴を抽出する。
これらの低次元表現上で線形モデルをトレーニングすると、インスタンスレベルでのモデル性能の信頼性を予測できることを示す。
論文 参考訳(メタデータ) (2025-01-02T22:26:54Z) - Predicting Emergent Capabilities by Finetuning [98.9684114851891]
微調整された言語モデルでは,出現頻度の低いモデルに展開するスケーリングのポイントをシフトできることがわかった。
提案手法は4つの標準NLPベンチマークを用いて検証する。
いくつかのケースでは、最大4倍の計算でトレーニングされたモデルが出現したかどうかを正確に予測できる。
論文 参考訳(メタデータ) (2024-11-25T01:48:09Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Understanding and Mitigating Tokenization Bias in Language Models [6.418593476658017]
State-of-the-art言語モデルは自己回帰型であり、トークンとして知られるサブワード単位で動作する。
一般的な符号化方式は、より多くのトレーニングやデータで緩和できないサンプリングバイアスを引き起こすことを示す。
トークン化データに基づいて訓練された任意の言語モデルからバイアスのない推定値を得るための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-24T17:38:02Z) - TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction [61.295716741720284]
TokenUnifyは、ランダムトークン予測、次のトークン予測、次のトークン予測を統合する新しい事前学習手法である。
TokenUnifyと共同で,超高解像度の大規模電子顕微鏡画像データセットを構築した。
このデータセットには1億2000万以上の注釈付きボクセルが含まれており、これまでで最大のニューロンセグメンテーションデータセットとなっている。
論文 参考訳(メタデータ) (2024-05-27T05:45:51Z) - "My Answer is C": First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models [40.867655189493924]
言語生成のオープンな性質は、大規模言語モデル(LLM)の評価を困難にしている。
1つの一般的な評価手法は、応答空間を制限するためにMulti-choice Question (MCQ) を用いる。
そこで本研究では,テキストの出力を数次元で評価する。
論文 参考訳(メタデータ) (2024-02-22T12:47:33Z) - Closing the Curious Case of Neural Text Degeneration [91.22954750742183]
トラニケートサンプリングの有効性を理論的に説明する。
モデルエラーの既知の源であるソフトマックスボトルネックを利用して、特定のトークンが真の確率がゼロでないことを示す。
提案手法は,低エントロピーテキスト生成におけるしきい値ベースよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-02T23:16:25Z) - Induced Natural Language Rationales and Interleaved Markup Tokens Enable
Extrapolation in Large Language Models [8.166629393064097]
トレーニング例として提示されるものよりも長いシーケンスの予測を行う能力は、ディープラーニングモデルにとって難しい問題である。
最近の研究は、この制限が最先端のTransformerベースのモデルで持続していることを示している。
大規模言語モデルがアーキテクチャや訓練手順を変更することなく外挿に成功できることを実証する。
論文 参考訳(メタデータ) (2022-08-24T11:25:27Z) - Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
Distribution Predictions [1.8275108630751844]
ランダム化アルゴリズムは制約満足度問題 (CSP) やブール満足度問題 (SAT) の多くの最先端の解法で用いられている。
従来の最先端の手法は、入力インスタンスが従う固定パラメトリック分布を直接予測しようとする。
この新モデルは,低観測環境下での堅牢な予測性能と,検閲された観測処理を実現する。
論文 参考訳(メタデータ) (2020-12-14T01:15:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。