論文の概要: How Expressive are Knowledge Graph Foundation Models?
- arxiv url: http://arxiv.org/abs/2502.13339v1
- Date: Tue, 18 Feb 2025 23:38:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:01:02.730019
- Title: How Expressive are Knowledge Graph Foundation Models?
- Title(参考訳): 知識グラフ基礎モデルはどの程度表現力が高いか?
- Authors: Xingyue Huang, Pablo Barceló, Michael M. Bronstein, İsmail İlkan Ceylan, Mikhail Galkin, Juan L Reutter, Miguel Romero Orth,
- Abstract要約: 本稿では,知識グラフ基礎モデルの表現力は,関係表現の学習に使用されるモチーフに依存していることを示す。
本研究の一環として、より豊かなモチーフを用いて、より表現力のあるKGFMを設計する。
- 参考スコア(独自算出の注目度): 29.718081334595542
- License:
- Abstract: Knowledge Graph Foundation Models (KGFMs) are at the frontier for deep learning on knowledge graphs (KGs), as they can generalize to completely novel knowledge graphs with different relational vocabularies. Despite their empirical success, our theoretical understanding of KGFMs remains very limited. In this paper, we conduct a rigorous study of the expressive power of KGFMs. Specifically, we show that the expressive power of KGFMs directly depends on the motifs that are used to learn the relation representations. We then observe that the most typical motifs used in the existing literature are binary, as the representations are learned based on how pairs of relations interact, which limits the model's expressiveness. As part of our study, we design more expressive KGFMs using richer motifs, which necessitate learning relation representations based on, e.g., how triples of relations interact with each other. Finally, we empirically validate our theoretical findings, showing that the use of richer motifs results in better performance on a wide range of datasets drawn from different domains.
- Abstract(参考訳): 知識グラフ基礎モデル(KGFMs)は知識グラフ(KGs)の深層学習の最前線にあり、異なる関係語彙を持つ全く新しい知識グラフに一般化することができる。
実験的な成功にもかかわらず、KGFMの理論的理解は非常に限られている。
本稿では,KGFMの表現力に関する厳密な研究を行う。
具体的には、KGFMの表現力は、関係表現の学習に使用されるモチーフに依存していることを示す。
次に、既存の文献で使用される最も典型的なモチーフは二項であり、その表現は関係のペアがどのように相互作用するかに基づいて学習され、モデルの表現性が制限される。
本研究の一環として、より豊かなモチーフを用いて、より表現力のあるKGFMを設計する。
最後に、我々は、よりリッチなモチーフの使用により、異なるドメインから引き出された幅広いデータセットのパフォーマンスが向上することを示す、理論的知見を実証的に検証した。
関連論文リスト
- Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion [63.68647582680998]
I-FKGC(inductive few-shot knowledge graph completion)と呼ばれる課題に焦点をあてる。
帰納的推論(inductive reasoning)の概念に着想を得て,I-FKGCを帰納的推論問題とした。
本稿では,仮説の連成分布をモデル化したニューラルプロセスに基づく仮説抽出器を提案する。
第2のモジュールでは、この仮説に基づいて、クエリセットのトリプルが抽出された仮説と一致するかどうかをテストするグラフアテンションベースの予測器を提案する。
論文 参考訳(メタデータ) (2024-08-03T13:37:40Z) - zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models [33.10218179341504]
埋め込み型TKGF法において,大規模言語モデルを用いて関係表現を生成する。
本稿では,TKGFモデルが従来見つからなかった関係で事実を予測する上で,より優れた性能を実現する上で有効であることを示す。
論文 参考訳(メタデータ) (2023-11-15T21:25:15Z) - Visual Commonsense based Heterogeneous Graph Contrastive Learning [79.22206720896664]
視覚的推論タスクをより良く仕上げるための異種グラフコントラスト学習法を提案する。
本手法はプラグイン・アンド・プレイ方式として設計されており,多種多様な代表手法と迅速かつ容易に組み合わせることができる。
論文 参考訳(メタデータ) (2023-11-11T12:01:18Z) - Towards Foundation Models for Knowledge Graph Reasoning [18.77355708537997]
知識グラフ(KG)は、一般に重複しない異なる実体と関係語彙を持つ。
本稿では、普遍的および伝達可能なグラフ表現を学習するためのアプローチであるULTRAを提案する。
様々な大きさの未確認グラフ上の単一事前学習ULTRAモデルのゼロショット帰納的推論性能は、特定のグラフ上で訓練された強いベースラインよりも、しばしば同等かそれ以上である。
論文 参考訳(メタデータ) (2023-10-06T20:00:07Z) - Knowledge Graph Embedding: An Overview [42.16033541753744]
本稿では,知識グラフの完成に関する現在の研究状況について概観する。
我々は,KG埋め込み(KGE)設計の2つの主要分野に焦点を当てた:1)距離ベース手法と2)意味マッチング方式である。
次に,2次元および3次元アフィン操作からインスピレーションを得る複合Eと複合E3Dを探索する。
論文 参考訳(メタデータ) (2023-09-21T21:52:42Z) - Probing Graph Representations [77.7361299039905]
グラフ表現でキャプチャされた意味のある情報の量を定量化するために、探索フレームワークを使用します。
本研究は, グラフモデルにおける帰納的バイアスを理解するための探索の可能性を示すものである。
グラフベースモデルを評価する上で有用な診断ツールとして,探索を提唱する。
論文 参考訳(メタデータ) (2023-03-07T14:58:18Z) - I Know What You Do Not Know: Knowledge Graph Embedding via
Co-distillation Learning [16.723470319188102]
知識グラフの埋め込みは、実体と関係のベクトル表現を学習しようとする。
近年の研究では、事前学習された言語モデルを用いて、実体や関係のテキスト情報に基づいて埋め込みを学習している。
我々は,グラフ構造とテキスト情報の補完を利用するKG Embeddingの共蒸留学習手法であるCoLEを提案する。
論文 参考訳(メタデータ) (2022-08-21T07:34:37Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - What is Learned in Knowledge Graph Embeddings? [3.224929252256631]
知識グラフ(英: knowledge graph, KG)とは、有向グラフの頂点と辺として実体と関係を表すデータ構造である。
本稿では,関係性間の規則の学習が,組込み方式の性能向上の要因であるかどうかを考察する。
合成KGの実験により、KGモデルがモチーフを学習し、その能力が非モチーフエッジによってどのように劣化するかを示す。
論文 参考訳(メタデータ) (2021-10-19T13:52:11Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
本稿では,単語埋め込みのランダムウォークモデル(Arora et al., 2016a)を知識グラフ埋め込み(KGE)に拡張する。
二つの実体 h (head) と t (tail) の間の関係 R の強さを評価するスコア関数を導出する。
理論的解析によって動機付けられた学習目標を提案し,知識グラフからKGEを学習する。
論文 参考訳(メタデータ) (2021-01-25T13:31:29Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。