論文の概要: Fighter Jet Navigation and Combat using Deep Reinforcement Learning with Explainable AI
- arxiv url: http://arxiv.org/abs/2502.13373v1
- Date: Wed, 19 Feb 2025 02:14:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:03.075218
- Title: Fighter Jet Navigation and Combat using Deep Reinforcement Learning with Explainable AI
- Title(参考訳): 説明可能なAIを用いた深部強化学習による戦闘機の航法と戦闘
- Authors: Swati Kar, Soumyabrata Dey, Mahesh K Banavar, Shahnewaz Karim Sakib,
- Abstract要約: 本稿では,Pygameシミュレーション環境における人工知能(AI)ベースの戦闘機エージェントの開発について述べる。
ジェットの主な目的は、環境を効率的にナビゲートし、目標に達すること、敵を選択的に攻撃または回避することである。
その結果、80%以上のタスク完了率を示し、効果的な意思決定を実証した。
- 参考スコア(独自算出の注目度): 1.0499611180329804
- License:
- Abstract: This paper presents the development of an Artificial Intelligence (AI) based fighter jet agent within a customized Pygame simulation environment, designed to solve multi-objective tasks via deep reinforcement learning (DRL). The jet's primary objectives include efficiently navigating the environment, reaching a target, and selectively engaging or evading an enemy. A reward function balances these goals while optimized hyperparameters enhance learning efficiency. Results show more than 80\% task completion rate, demonstrating effective decision-making. To enhance transparency, the jet's action choices are analyzed by comparing the rewards of the actual chosen action (factual action) with those of alternate actions (counterfactual actions), providing insights into the decision-making rationale. This study illustrates DRL's potential for multi-objective problem-solving with explainable AI. Project page is available at: \href{https://github.com/swatikar95/Autonomous-Fighter-Jet-Navigation-and-Combat}{Project GitHub Link}.
- Abstract(参考訳): 本稿では, 深部強化学習(DRL)による多目的タスクの解決を目的とした, カスタマイズされたPygameシミュレーション環境内における人工知能(AI)ベースの戦闘機エージェントの開発について述べる。
ジェットの主な目的は、環境を効率的にナビゲートし、目標に達すること、敵を選択的に攻撃または回避することである。
報酬関数はこれらの目標をバランスさせ、最適化されたハイパーパラメータは学習効率を高める。
結果は、80%以上のタスク完了率を示し、効果的な意思決定を実証する。
透明性を高めるために、ジェットのアクション選択は、実際の選択されたアクション(実行動)の報酬と代替アクション(実行動)の報酬を比較して分析し、意思決定の合理性に関する洞察を与える。
本研究は,多目的問題解決におけるDRLの可能性について解説する。
プロジェクトのページは以下の通りである。 \href{https://github.com/swatikar95/Autonomous-Fighter-Jet-Navigation-and-Combat}{Project GitHub Link}。
関連論文リスト
- Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
本稿では,マルチロールUAV協調追従ゲームにおける意思決定のための深層強化学習モデルを提案する。
提案手法は,追従回避ゲームシナリオにおけるUAVの自律的意思決定を可能にする。
論文 参考訳(メタデータ) (2024-11-05T10:45:30Z) - Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies [0.9208007322096532]
本研究では,ロボットが目的達成に向けて効果的に移動できるよう訓練するための単目的と多目的の強化学習法の比較分析を行った。
報酬関数を変更して報酬のベクターを返却し、それぞれ異なる目的に関連付けることで、ロボットはそれぞれの目標を効果的にバランスさせるポリシーを学ぶ。
論文 参考訳(メタデータ) (2023-12-13T08:00:26Z) - Multi-Agent Deep Reinforcement Learning for Dynamic Avatar Migration in
AIoT-enabled Vehicular Metaverses with Trajectory Prediction [70.9337170201739]
本稿では,その歴史データに基づいて,知的車両の将来の軌跡を予測するモデルを提案する。
提案アルゴリズムは,予測なしでアバタータスクの実行遅延を約25%削減できることを示す。
論文 参考訳(メタデータ) (2023-06-26T13:27:11Z) - Learning Multi-Pursuit Evasion for Safe Targeted Navigation of Drones [0.0]
本稿では,非同期多段階深部強化学習(AMS-DRL)による対向ニューラルネットワークの学習手法を提案する。
AMS-DRLは、追従者および回避者を二部グラフで非同期に訓練する追従回避ゲームにおいて、敵エージェントを進化させる。
本手法を広範囲なシミュレーションで評価し,航法成功率の高いベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-07T01:59:16Z) - Fantastic Rewards and How to Tame Them: A Case Study on Reward Learning
for Task-oriented Dialogue Systems [111.80916118530398]
強化学習(RL)技術は、ユーザ固有の目標を達成するための対話戦略を訓練するために、自然に利用することができる。
本稿では,エンド・ツー・エンド(E2E)TODエージェントのトレーニングにおいて,報酬関数を効果的に学習し,活用する方法という疑問に答えることを目的とする。
論文 参考訳(メタデータ) (2023-02-20T22:10:04Z) - Robot path planning using deep reinforcement learning [0.0]
強化学習法は、地図のないナビゲーションタスクに代わる手段を提供する。
障害物回避と目標指向ナビゲーションタスクの両方に深部強化学習エージェントを実装した。
報酬関数の変更によるエージェントの挙動と性能の変化を解析する。
論文 参考訳(メタデータ) (2023-02-17T20:08:59Z) - Reinforcement learning reward function in unmanned aerial vehicle
control tasks [0.0]
報酬関数は、目標に対する簡易な軌道の時間の構成と推定に基づいている。
新たに開発された仮想環境において,報酬関数の有効性を検証した。
論文 参考訳(メタデータ) (2022-03-20T10:32:44Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Adversarial Reinforced Instruction Attacker for Robust Vision-Language
Navigation [145.84123197129298]
自然言語に基づくナビゲーションタスクでは,言語指導が重要な役割を担っている。
より堅牢なナビゲータを訓練し、長い指導から重要な要素を動的に抽出する。
具体的には,航法士が間違った目標に移動することを誤認することを学習する動的強化命令攻撃装置(DR-Attacker)を提案する。
論文 参考訳(メタデータ) (2021-07-23T14:11:31Z) - Reinforcement Learning for Robust Missile Autopilot Design [0.0]
この研究は、飛行制御のフレームワークとして強化学習を提案する先駆者である。
TRPOの手法では、収集されたエクスペリエンスはHERに従って拡張され、リプレイバッファに格納され、その重要性に応じてサンプリングされる。
その結果、最適な性能を達成し、不確実性に対するエージェントの堅牢性を改善することが可能であることがわかった。
論文 参考訳(メタデータ) (2020-11-26T09:30:04Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
新しい未解決タスクを継続的に解決することが、多様な行動を学ぶための鍵です。
エージェントが複数の目標を達成する必要があるマルチタスク領域では、トレーニング目標の選択はサンプル効率に大きな影響を与える可能性がある。
そこで我々は,エージェントが解決すべき目標のための自動カリキュラムを作成することを提案する。
提案手法は,13のマルチゴールロボットタスクと5つのナビゲーションタスクにまたがって評価し,現在の最先端手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2020-06-17T03:58:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。