SNN-Driven Multimodal Human Action Recognition via Event Camera and Skeleton Data Fusion
- URL: http://arxiv.org/abs/2502.13385v1
- Date: Wed, 19 Feb 2025 02:50:51 GMT
- Title: SNN-Driven Multimodal Human Action Recognition via Event Camera and Skeleton Data Fusion
- Authors: Naichuan Zheng, Hailun Xia,
- Abstract summary: We propose a novel Spiking Neural Network (SNN)-driven framework for multimodal human action recognition.
Our framework is centered on two key innovations: (1) a novel multimodal SNN architecture that employs distinct backbone networks for each modality, and (2) a pioneering SNN-based discretized information bottleneck mechanism.
- Score: 0.7910116766220068
- License:
- Abstract: Multimodal human action recognition based on RGB and skeleton data fusion, while effective, is constrained by significant limitations such as high computational complexity, excessive memory consumption, and substantial energy demands, particularly when implemented with Artificial Neural Networks (ANN). These limitations restrict its applicability in resource-constrained scenarios. To address these challenges, we propose a novel Spiking Neural Network (SNN)-driven framework for multimodal human action recognition, utilizing event camera and skeleton data. Our framework is centered on two key innovations: (1) a novel multimodal SNN architecture that employs distinct backbone networks for each modality-an SNN-based Mamba for event camera data and a Spiking Graph Convolutional Network (SGN) for skeleton data-combined with a spiking semantic extraction module to capture deep semantic representations; and (2) a pioneering SNN-based discretized information bottleneck mechanism for modality fusion, which effectively balances the preservation of modality-specific semantics with efficient information compression. To validate our approach, we propose a novel method for constructing a multimodal dataset that integrates event camera and skeleton data, enabling comprehensive evaluation. Extensive experiments demonstrate that our method achieves superior performance in both recognition accuracy and energy efficiency, offering a promising solution for practical applications.
Related papers
- Enhancing Audio-Visual Spiking Neural Networks through Semantic-Alignment and Cross-Modal Residual Learning [10.862065825733243]
Spiking Neural Networks (SNNs) are brain-inspired computational models.
Existing SNN models focus on unimodal processing and lack efficient cross-modal information fusion.
We propose a semantic-alignment cross-modal residual learning framework for effective audio-visual integration.
arXiv Detail & Related papers (2025-02-18T03:18:29Z) - CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics [7.696109414724968]
Spiking neural networks (SNNs) are promising for event-based object recognition and detection.
Existing SNN frameworks often fail to handle multi-scaletemporal features, leading to increased data redundancy and reduced accuracy.
We propose CREST, a novel conjointly-trained spike-driven framework to exploit event-based object detection.
arXiv Detail & Related papers (2024-12-17T04:33:31Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.
embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.
split computing - where an SNN is partitioned across two devices - is a promising solution.
This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model [30.66645039322337]
High-quality benchmark datasets are great importance to the advances of Artificial Neural Networks (SNNs)
Yet, the SNN-based cross-modal fusion remains underexplored.
In this work, we present a neuromorphic dataset that can better exploit the inherent-temporal betemporal of SNNs.
arXiv Detail & Related papers (2024-10-21T06:59:04Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.