Synthetic gauge potentials for the dark state polaritons in atomic media
- URL: http://arxiv.org/abs/2104.11031v1
- Date: Thu, 22 Apr 2021 13:06:22 GMT
- Title: Synthetic gauge potentials for the dark state polaritons in atomic media
- Authors: Yu-Hung Kuan, Siang-Wei Shao, I-Kang Liu, Julius Ruseckas, Gediminas
Juzeli\=unas, Yu-Ju Lin, and Wen-TeLiao
- Abstract summary: We propose an optical scheme to generate effective gauge potentials for stationary-light polaritons.
Our scheme paves a novel way towards the investigation of the bosonic analogue of the fractional quantum Hall effect by electromagnetically induced transparency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quest of utilizing neutral particles to simulate the behaviour of charged
particles in a magnetic field makes the generation of artificial magnetic field
of great interest. The previous and the only proposal for the production of
synthetic magnetic field for the dark state polaritons in electromagnetically
induced transparency invokes the mechanical rotation of a sample. Here, we put
forward an optical scheme to generate effective gauge potentials for
stationary-light polaritons. 5To demonstrate the capabilities of our approach,
we present recipes for having dark state polaritons in degenerate Landau levels
and in driven quantum harmonic oscillator. Our scheme paves a novel way towards
the investigation of the bosonic analogue of the fractional quantum Hall effect
by electromagnetically induced transparency.
Related papers
- Simulation of chiral motion of excitation within the ground-state manifolds of neutral atoms [0.4218593777811082]
Laser-induced gauge fields in neutral atoms serve as a means of mimicking the effects of a magnetic field.
We propose a method to generate chiral motion in atomic excitations within the neutral atomic ground-state manifold.
The proposed method can be readily extended to implement a hexagonal neutral atom lattice, serving as the fundamental unit in realizing the Haldane model.
arXiv Detail & Related papers (2024-06-17T07:53:37Z) - Implementing a synthetic magnetic vector potential in a 2D superconducting qubit array [0.19165511108619068]
Many interesting condensed-matter phenomena emerge only in the presence of electromagnetic fields.
We emulate the dynamics of charged particles in an electromagnetic field using a superconducting quantum simulator.
We demonstrate that the Hall effect--the transverse deflection of a charged particle propagating in an electromagnetic field--exists in the presence of the synthetic electromagnetic field.
arXiv Detail & Related papers (2024-05-01T21:20:38Z) - All-optical measurement of magnetic fields for quantum gas experiments [0.0]
We present an all-optical method to measure and compensate for residual magnetic fields present in a cloud of ultracold atoms.
Our approach leverages the increased loss from the trapped atomic sample through electromagnetically induced absorption.
Modulating the excitation laser provides coherent sidebands, resulting in Lambda-type pump-probe scheme.
arXiv Detail & Related papers (2023-11-14T19:42:16Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Production of twisted particles in magnetic fields [62.997667081978825]
Quantum states suitable for a production of charged particles in a uniform magnetic field are determined.
Experiments allowing one successful discoveries of twisted positrons and positroniums are developed.
arXiv Detail & Related papers (2022-07-28T14:20:36Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spin emitters beyond the point dipole approximation in nanomagnonic
cavities [0.0]
Control over transition rates between spin states of emitters is crucial in a variety of fields ranging from quantum information science to the nanochemistry of free radicals.
We present an approach to drive a both electric and magnetic dipole-forbidden transition of a spin emitter by placing it in a nanomagnonic cavity.
arXiv Detail & Related papers (2020-12-08T19:00:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.