RLTHF: Targeted Human Feedback for LLM Alignment
- URL: http://arxiv.org/abs/2502.13417v1
- Date: Wed, 19 Feb 2025 04:25:11 GMT
- Title: RLTHF: Targeted Human Feedback for LLM Alignment
- Authors: Yifei Xu, Tusher Chakraborty, Emre Kıcıman, Bibek Aryal, Eduardo Rodrigues, Srinagesh Sharma, Roberto Estevao, Maria Angels de Luis Balaguer, Jessica Wolk, Rafael Padilha, Leonardo Nunes, Shobana Balakrishnan, Songwu Lu, Ranveer Chandra,
- Abstract summary: Fine-tuning large language models to align with user preferences is challenging due to the high cost of quality human annotations.
We propose RLTHF, a human-AI hybrid framework that combines LLM-based initial alignment with selective human annotations.
We show that RLTHF reaches full-human annotation-level alignment with only 6-7% of the human annotation effort.
- Score: 6.9866569384937325
- License:
- Abstract: Fine-tuning large language models (LLMs) to align with user preferences is challenging due to the high cost of quality human annotations in Reinforcement Learning from Human Feedback (RLHF) and the generalizability limitations of AI Feedback. To address these challenges, we propose RLTHF, a human-AI hybrid framework that combines LLM-based initial alignment with selective human annotations to achieve full-human annotation alignment with minimal effort. RLTHF identifies hard-to-annotate samples mislabeled by LLMs using a reward model's reward distribution and iteratively enhances alignment by integrating strategic human corrections while leveraging LLM's correctly labeled samples. Evaluations on HH-RLHF and TL;DR datasets show that RLTHF reaches full-human annotation-level alignment with only 6-7% of the human annotation effort. Furthermore, models trained on RLTHF's curated datasets for downstream tasks outperform those trained on fully human-annotated datasets, underscoring the effectiveness of RLTHF's strategic data curation.
Related papers
- Simplify RLHF as Reward-Weighted SFT: A Variational Method [34.222095430239555]
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning Large Language Models (LLMs) with human values.
We propose a novel simplification of RLHF from the perspective of variational inference.
We transform the alignment objective into a reward-driven supervised fine-tuning form to obtain noticeable improvement on training stability and effectiveness.
arXiv Detail & Related papers (2025-02-16T07:22:00Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
We propose Aligning Instruction Tuning with Pre-training (AITP) to align instruction tuning with pre-training distributions.
We show consistent performance improvements with AITP on three fully open large language models (LLMs) across eight benchmarks.
arXiv Detail & Related papers (2025-01-16T08:27:40Z) - Reward Modeling with Weak Supervision for Language Models [12.599789817157188]
This work introduces weak supervision as a strategy to extend RLHF datasets and enhance reward model performance.
By analyzing RLHF datasets to identify imprecise responses, we wrote simple labeling functions and then calibrated a label model to weakly unlabeled data.
Our evaluation show that while weak supervision significantly benefits smaller datasets by improving reward model performance, its effectiveness decreases with larger, originally labeled datasets.
arXiv Detail & Related papers (2024-10-28T09:37:58Z) - Reward Difference Optimization For Sample Reweighting In Offline RLHF [18.62836654699957]
Current offline RLHF only captures the "ordinal relationship" between responses, overlooking the crucial aspect of how much one is preferred over the others.
We propose a simple yet effective solution called Reward Difference Optimization, shorted as RDO.
Experiments with 7B LLMs on the HH and TL;DR datasets substantiate the effectiveness of our method in both automatic metrics and human evaluation.
arXiv Detail & Related papers (2024-08-18T07:04:16Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - CLHA: A Simple yet Effective Contrastive Learning Framework for Human Alignment [42.71324708567498]
Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models (LLMs) with human preferences.
We present a simple yet effective Contrastive Learning Framework for Human Alignment (CLHA) to align LLMs with human preferences directly.
arXiv Detail & Related papers (2024-03-25T11:37:15Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z) - Fine-tuning Language Models with Generative Adversarial Reward Modelling [30.424363135421917]
Reinforcement Learning with Human Feedback (RLHF) has been demonstrated to significantly enhance the performance of large language models (LLMs)
We propose another alternative approach: Reinforcement Learning with Generative Adversarial Feedback (RLGAF) to RLHF and SFT.
arXiv Detail & Related papers (2023-05-09T17:06:06Z) - RRHF: Rank Responses to Align Language Models with Human Feedback
without tears [69.68672043223249]
InstructGPT implements RLHF through several stages, including Supervised Fine-Tuning (SFT), reward model training, and Proximal Policy Optimization (PPO)
We propose a novel learning paradigm called RRHF, which scores sampled responses from different sources via a logarithm of conditional probabilities.
We evaluate RRHF on the Helpful and Harmless dataset, demonstrating comparable alignment performance with PPO by reward model score and human labeling.
arXiv Detail & Related papers (2023-04-11T15:53:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.