Reward Modeling with Weak Supervision for Language Models
- URL: http://arxiv.org/abs/2410.20869v1
- Date: Mon, 28 Oct 2024 09:37:58 GMT
- Title: Reward Modeling with Weak Supervision for Language Models
- Authors: Ben Hauptvogel, Malte Ostendorff, Georg Rehm, Sebastian Möller,
- Abstract summary: This work introduces weak supervision as a strategy to extend RLHF datasets and enhance reward model performance.
By analyzing RLHF datasets to identify imprecise responses, we wrote simple labeling functions and then calibrated a label model to weakly unlabeled data.
Our evaluation show that while weak supervision significantly benefits smaller datasets by improving reward model performance, its effectiveness decreases with larger, originally labeled datasets.
- Score: 12.599789817157188
- License:
- Abstract: Recent advancements in large language models (LLMs) have led to their increased application across various tasks, with reinforcement learning from human feedback (RLHF) being a crucial part of their training to align responses with user intentions. In the RLHF process, a reward model is trained using responses preferences determined by human labelers or AI systems, which then refines the LLM through reinforcement learning. This work introduces weak supervision as a strategy to extend RLHF datasets and enhance reward model performance. Weak supervision employs noisy or imprecise data labeling, reducing reliance on expensive manually labeled data. By analyzing RLHF datasets to identify heuristics that correlate with response preference, we wrote simple labeling functions and then calibrated a label model to weakly annotate unlabeled data. Our evaluation show that while weak supervision significantly benefits smaller datasets by improving reward model performance, its effectiveness decreases with larger, originally labeled datasets. Additionally, using an LLM to generate and then weakly label responses offers a promising method for extending preference data.
Related papers
- Does RLHF Scale? Exploring the Impacts From Data, Model, and Method [83.53178716807776]
This study explores the scaling properties of Reinforcement Learning from Human Feedback in Large Language Models.
We analyze key components in the RLHF framework--model size, data composition, and inference budget--and their impacts on performance.
arXiv Detail & Related papers (2024-12-08T17:19:48Z) - Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.
LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.
Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Self-Evolved Reward Learning for LLMs [45.6910747154447]
Reinforcement Learning from Human Feedback (RLHF) is a crucial technique for aligning language models with human preferences.
We propose Self-Evolved Reward Learning (SER), a novel approach where the RM generates additional training data to iteratively improve itself.
Our results demonstrate that even with limited human-annotated data, learning from self-feedback can robustly enhance RM performance.
arXiv Detail & Related papers (2024-11-01T07:29:03Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - Prototypical Reward Network for Data-Efficient RLHF [17.220998116937444]
A reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs)
Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback.
arXiv Detail & Related papers (2024-06-06T15:23:30Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
Reinforcement Learning from Human Feedback (RLHF) is a technique that aligns language models closely with human-centric values.
It is observed that the performance of the reward model degrades after one epoch of training, and optimizing too much against the learned reward model eventually hinders the true objective.
This paper delves into these issues, leveraging the theoretical insights to design improved reward learning algorithm termed 'Iterative Data Smoothing' (IDS)
arXiv Detail & Related papers (2024-01-29T17:43:42Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.