論文の概要: What are Models Thinking about? Understanding Large Language Model Hallucinations "Psychology" through Model Inner State Analysis
- arxiv url: http://arxiv.org/abs/2502.13490v1
- Date: Wed, 19 Feb 2025 07:23:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:01:34.665905
- Title: What are Models Thinking about? Understanding Large Language Model Hallucinations "Psychology" through Model Inner State Analysis
- Title(参考訳): モデルが何を考えているのか : モデル内状態分析による大規模言語モデル幻覚「心理学」の理解
- Authors: Peiran Wang, Yang Liu, Yunfei Lu, Jue Hong, Ye Wu,
- Abstract要約: 大規模言語モデルの推論の内部状態は、多くの研究で広く使われている。
本稿では,前向き推論における各内部状態の特徴を解析し,幻覚検出の能力を評価する。
- 参考スコア(独自算出の注目度): 5.8289838136060155
- License:
- Abstract: Large language model (LLM) systems suffer from the models' unstable ability to generate valid and factual content, resulting in hallucination generation. Current hallucination detection methods heavily rely on out-of-model information sources, such as RAG to assist the detection, thus bringing heavy additional latency. Recently, internal states of LLMs' inference have been widely used in numerous research works, such as prompt injection detection, etc. Considering the interpretability of LLM internal states and the fact that they do not require external information sources, we introduce such states into LLM hallucination detection. In this paper, we systematically analyze different internal states' revealing features during inference forward and comprehensively evaluate their ability in hallucination detection. Specifically, we cut the forward process of a large language model into three stages: understanding, query, generation, and extracting the internal state from these stages. By analyzing these states, we provide a deep understanding of why the hallucinated content is generated and what happened in the internal state of the models. Then, we introduce these internal states into hallucination detection and conduct comprehensive experiments to discuss the advantages and limitations.
- Abstract(参考訳): 大規模言語モデル(LLM)システムは、有効かつ現実的なコンテンツを生成するモデルの不安定な能力に悩まされ、幻覚生成をもたらす。
現在の幻覚検出方法は、RAGのようなモデル外情報ソースに大きく依存している。
近年,LSMの内部状態はインジェクション検出などの多くの研究で広く利用されている。
LLMの内部状態の解釈可能性や外部情報を必要としないことを考えると、これらの状態をLLM幻覚検出に導入する。
本稿では,前向き推論における内部状態の特徴を系統的に解析し,幻覚検出におけるその能力を包括的に評価する。
具体的には,大規模言語モデルの前方処理を,理解,クエリ,生成,内部状態の抽出という3つの段階に分けた。
これらの状態を解析することにより、なぜ幻覚コンテンツが生成されるのか、モデルの内部状態で何が起こったのかを深く理解する。
次に、これらの内部状態を幻覚検出に導入し、その利点と限界について議論するための総合的な実験を行う。
関連論文リスト
- Who Brings the Frisbee: Probing Hidden Hallucination Factors in Large Vision-Language Model via Causality Analysis [14.033320167387194]
現実の応用における大きな課題は幻覚であり、LVLMは存在しない視覚要素を生成し、ユーザの信頼を損なう。
我々は、オブジェクト、コンテキスト、セマンティックフォアグラウンド・バックグラウンド構造といった隠れた要因が幻覚を引き起こすという仮説を立てた。
画像・テキスト・プロンプト・ネットワーク・サリエンシの因果関係を解析することにより,これらの要因をブロックするための介入を系統的に検討する。
論文 参考訳(メタデータ) (2024-12-04T01:23:57Z) - Knowledge Overshadowing Causes Amalgamated Hallucination in Large Language Models [65.32990889402927]
「我々はこの現象を知識の誇張として造る。」
その結果, 幻覚率の増大は, 不均衡比と支配的条件記述の長さに左右されることがわかった。
本稿では,その発生前に幻覚をキャッチするための信号として,オーバーシェーディング条件を用いることを提案する。
論文 参考訳(メタデータ) (2024-07-10T20:37:42Z) - VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models [59.05674402770661]
本稿では,大規模ビデオ言語モデル(LVLM)における幻覚検出のための最初の総合的ベンチマークであるVideoHallucerを紹介する。
VideoHallucerは幻覚を2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-06-24T06:21:59Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
大規模な言語モデルはファクトイドの質問に答えることに成功したが、幻覚を起こす傾向がある。
正しい解答知識を持つLLMの現象を推論力学の観点から検討する。
我々の研究は、LLMの幻覚が既知の事実について、そしてより重要なのは、幻覚を正確に予測する理由を理解することに光を当てた。
論文 参考訳(メタデータ) (2024-03-29T06:48:30Z) - Mechanistic Understanding and Mitigation of Language Model Non-Factual Hallucinations [42.46721214112836]
State-of-the-art Language Model (LM) は、世界の知識と混同する非現実的な幻覚を生じることがある。
我々は、主観的関係クエリを用いた診断データセットを作成し、内部モデル表現による幻覚の追跡に解釈可能性手法を適用した。
論文 参考訳(メタデータ) (2024-03-27T00:23:03Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
幻覚は、大規模言語モデル(LLM)の実践的実装において重要な課題となる。
本稿では,幻覚に対処するための選択的検索拡張プロセスにより,Lowenを改良する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-16T11:55:40Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
大規模言語モデル(LLM)の出現は、自然言語処理(NLP)において大きなブレークスルーとなった。
LLMは幻覚を起こす傾向があり、可視だが非現実的な内容を生成する。
この現象は、実世界の情報検索システムにおけるLCMの信頼性に対する重大な懸念を引き起こす。
論文 参考訳(メタデータ) (2023-11-09T09:25:37Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。