REFIND: Retrieval-Augmented Factuality Hallucination Detection in Large Language Models
- URL: http://arxiv.org/abs/2502.13622v1
- Date: Wed, 19 Feb 2025 10:59:05 GMT
- Title: REFIND: Retrieval-Augmented Factuality Hallucination Detection in Large Language Models
- Authors: DongGeon Lee, Hwanjo Yu,
- Abstract summary: Hallucinations in large language model (LLM) outputs severely limit their reliability in knowledge-intensive tasks such as question answering.
We introduce REFIND, a novel framework that detects hallucinated spans within LLM outputs by directly leveraging retrieved documents.
REFIND demonstrated robustness across nine languages, including low-resource settings, and significantly outperformed baseline models.
- Score: 15.380441563675243
- License:
- Abstract: Hallucinations in large language model (LLM) outputs severely limit their reliability in knowledge-intensive tasks such as question answering. To address this challenge, we introduce REFIND (Retrieval-augmented Factuality hallucINation Detection), a novel framework that detects hallucinated spans within LLM outputs by directly leveraging retrieved documents. As part of the REFIND, we propose the Context Sensitivity Ratio (CSR), a novel metric that quantifies the sensitivity of LLM outputs to retrieved evidence. This innovative approach enables REFIND to efficiently and accurately detect hallucinations, setting it apart from existing methods. In the evaluation, REFIND demonstrated robustness across nine languages, including low-resource settings, and significantly outperformed baseline models, achieving superior IoU scores in identifying hallucinated spans. This work highlights the effectiveness of quantifying context sensitivity for hallucination detection, thereby paving the way for more reliable and trustworthy LLM applications across diverse languages.
Related papers
- HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses [0.12499537119440242]
This paper proposes an explanation enhanced hallucination-detection model, coined as HuDEx.
The proposed model provides a novel approach to integrate detection with explanations, and enable both users and the LLM itself to understand and reduce errors.
arXiv Detail & Related papers (2025-02-12T04:17:02Z) - LLM Hallucination Reasoning with Zero-shot Knowledge Test [10.306443936136425]
We introduce a new task, Hallucination Reasoning, which classifies LLM-generated text into one of three categories: aligned, misaligned, and fabricated.
Our experiments conducted on new datasets demonstrate the effectiveness of our method in hallucination reasoning.
arXiv Detail & Related papers (2024-11-14T18:55:26Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs)
We present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinations.
arXiv Detail & Related papers (2024-02-16T11:55:40Z) - Comparing Hallucination Detection Metrics for Multilingual Generation [62.97224994631494]
This paper assesses how well various factual hallucination detection metrics identify hallucinations in generated biographical summaries across languages.
We compare how well automatic metrics correlate to each other and whether they agree with human judgments of factuality.
Our analysis reveals that while the lexical metrics are ineffective, NLI-based metrics perform well, correlating with human annotations in many settings and often outperforming supervised models.
arXiv Detail & Related papers (2024-02-16T08:10:34Z) - INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection [39.52923659121416]
We propose to explore the dense semantic information retained within textbfINternal textbfStates for halluctextbfInation textbfDEtection.
A simple yet effective textbfEigenScore metric is proposed to better evaluate responses' self-consistency.
A test time feature clipping approach is explored to truncate extreme activations in the internal states.
arXiv Detail & Related papers (2024-02-06T06:23:12Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD is a benchmark designed for the detection of fact-conflicting hallucinations from LLMs.
FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation.
We introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2.
arXiv Detail & Related papers (2023-10-18T16:27:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.