論文の概要: Integrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks
- arxiv url: http://arxiv.org/abs/2502.13638v1
- Date: Wed, 19 Feb 2025 11:24:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:59.344766
- Title: Integrating Inverse and Forward Modeling for Sparse Temporal Data from Sensor Networks
- Title(参考訳): センサネットワークからのスパース時間データの逆モデリングとフォワードモデリングの統合
- Authors: Julian Vexler, Björn Vieten, Martin Nelke, Stefan Kramer,
- Abstract要約: センサネットワークからのスパースデータを解析するためのフレームワークであるCavePerceptionを提案する。
我々は、スパース、ノイズ、および潜在的に不完全なセンサデータの解釈可能性を改善することを目的としている。
- 参考スコア(独自算出の注目度): 2.4280350854512673
- License:
- Abstract: We present CavePerception, a framework for the analysis of sparse data from sensor networks that incorporates elements of inverse modeling and forward modeling. By integrating machine learning with physical modeling in a hypotheses space, we aim to improve the interpretability of sparse, noisy, and potentially incomplete sensor data. The framework assumes data from a two-dimensional sensor network laid out in a graph structure that detects certain objects, with certain motion patterns. Examples of such sensors are magnetometers. Given knowledge about the objects and the way they act on the sensors, one can develop a data generator that produces data from simulated motions of the objects across the sensor field. The framework uses the simulated data to infer object behaviors across the sensor network. The approach is experimentally tested on real-world data, where magnetometers are used on an airport to detect and identify aircraft motions. Experiments demonstrate the value of integrating inverse and forward modeling, enabling intelligent systems to better understand and predict complex, sensor-driven events.
- Abstract(参考訳): 本稿では,逆モデリングとフォワードモデリングの要素を組み込んだセンサネットワークからスパースデータを解析するためのフレームワークCavePerceptionを提案する。
仮説空間における機械学習と物理モデリングを統合することで、スパース、ノイズ、および潜在的不完全なセンサデータの解釈性を向上させることを目指している。
このフレームワークは、グラフ構造に配置された2次元センサーネットワークからのデータを仮定し、特定の物体を特定の動きパターンで検出する。
このようなセンサの例としては磁力計がある。
オブジェクトに関する知識とセンサーの動作の仕方を考えると、センサーフィールドを越えてオブジェクトのシミュレートされた動きからデータを生成するデータジェネレータを開発することができる。
このフレームワークは、シミュレーションデータを使用して、センサーネットワーク全体にわたるオブジェクトの振る舞いを推測する。
このアプローチは、空港で磁気センサを使用して航空機の動きを検出し、識別する実世界のデータで実験的にテストされている。
実験は、逆モデリングと前方モデリングを統合することの価値を示し、インテリジェントシステムは複雑なセンサー駆動のイベントをよりよく理解し、予測することができる。
関連論文リスト
- A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
本稿では、インテリジェントなデータ伝送機能を備えたセンシングフレームワークを実現するための新しいセンシングモジュールを提案する。
センサの近くに置かれる高効率機械学習モデルを統合する。
このモデルは,無関係な情報を破棄しながら,貴重なデータのみを送信するセンサシステムに対して,迅速なフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-03T05:41:39Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Data-Induced Interactions of Sparse Sensors [3.050919759387984]
トレーニングデータによって引き起こされるセンサインタラクションの全体像を熱力学ビューで計算する。
これらのデータによって引き起こされるセンサーの相互作用をマッピングすることで、外部選択基準と組み合わせ、センサーの代替効果を予測することができる。
論文 参考訳(メタデータ) (2023-07-21T18:13:37Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks [61.74608497496841]
不正確または破損したデータのトレーニングは、モデルバイアスとハマーズ一般化能力を誘導する。
本稿では,深度推定と再構成における高密度3次元視覚課題に対するセンサ誤差の影響について検討する。
論文 参考訳(メタデータ) (2023-03-26T22:32:44Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
本研究では,高分解能な触覚グローブを用いて,多種多様な物体に対して4種類のインタラクティブな動作を行う。
我々は,クロスモーダル学習フレームワーク上にモデルを構築し,視覚処理パイプラインを用いてラベルを生成し,触覚モデルを監督する。
この研究は、高密度触覚センシングによる手動物体相互作用における動的モデリングの一歩を踏み出す。
論文 参考訳(メタデータ) (2021-09-09T16:04:14Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
異なるセンサの組み合わせが車両の移動・運転環境の検出にどのように影響するかを評価します。
最終的な目標は、チャネルに分散するデータの量を最小限に抑える最適な設定を特定することです。
論文 参考訳(メタデータ) (2021-04-23T18:58:37Z) - Yet it moves: Learning from Generic Motions to Generate IMU data from
YouTube videos [5.008235182488304]
我々は、加速度計とジャイロ信号の両方の一般的な動きの回帰モデルをトレーニングして、合成IMUデータを生成する方法を示す。
我々は、回帰モデルにより生成されたシミュレーションデータに基づいてトレーニングされたシステムが、実センサデータに基づいてトレーニングされたシステムのF1スコアの平均の約10%に到達できることを実証した。
論文 参考訳(メタデータ) (2020-11-23T18:16:46Z) - Data-Driven Distributed State Estimation and Behavior Modeling in Sensor
Networks [5.817715558396024]
センサネットワークにおける状態推定と行動学習の同時学習の問題を定式化する。
本稿では,ガウス過程に基づくベイズフィルタ(GP-BayesFilters)をオンライン分散環境に拡張することで,シンプルで効果的な解を提案する。
提案手法の有効性は,マルチロボットプラットフォームから収集した合成データとデータの両方を用いて,未知の動作行動を持つ物体の追跡に評価される。
論文 参考訳(メタデータ) (2020-09-22T21:31:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。