論文の概要: Synth It Like KITTI: Synthetic Data Generation for Object Detection in Driving Scenarios
- arxiv url: http://arxiv.org/abs/2502.15076v1
- Date: Thu, 20 Feb 2025 22:27:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 19:42:01.954942
- Title: Synth It Like KITTI: Synthetic Data Generation for Object Detection in Driving Scenarios
- Title(参考訳): KITTIが気に入っている: 運転シナリオにおけるオブジェクト検出のための合成データ生成
- Authors: Richard Marcus, Christian Vogel, Inga Jatzkowski, Niklas Knoop, Marc Stamminger,
- Abstract要約: 本稿では,LiDAR点雲上での3次元物体検出のためのCARLAシミュレータに基づくデータセット生成パイプラインを提案する。
我々は、合成データに基づいてオブジェクト検出器を訓練し、KITTIデータセットに強力な一般化能力を示すことができる。
- 参考スコア(独自算出の注目度): 3.30184292168618
- License:
- Abstract: An important factor in advancing autonomous driving systems is simulation. Yet, there is rather small progress for transferability between the virtual and real world. We revisit this problem for 3D object detection on LiDAR point clouds and propose a dataset generation pipeline based on the CARLA simulator. Utilizing domain randomization strategies and careful modeling, we are able to train an object detector on the synthetic data and demonstrate strong generalization capabilities to the KITTI dataset. Furthermore, we compare different virtual sensor variants to gather insights, which sensor attributes can be responsible for the prevalent domain gap. Finally, fine-tuning with a small portion of real data almost matches the baseline and with the full training set slightly surpasses it.
- Abstract(参考訳): 自動運転システムの進歩の重要な要因はシミュレーションである。
しかし、仮想世界と実世界の間での転送可能性の進歩は比較的小さい。
我々は,この問題をLiDAR点雲上での3次元物体検出のために再検討し,CARLAシミュレータに基づくデータセット生成パイプラインを提案する。
ドメインランダム化戦略と慎重なモデリングを用いることで、合成データに基づいてオブジェクト検出器をトレーニングし、KITTIデータセットに強力な一般化能力を示すことができる。
さらに、異なる仮想センサの変種を比較して洞察を得る。
最後に、実際のデータのごく一部の微調整はベースラインとほぼ一致し、完全なトレーニングセットがわずかに上回っている。
関連論文リスト
- Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
ARSimは3次元合成オブジェクトを用いた実写多視点画像データの拡張を目的としたフレームワークである。
実データを用いて簡易な仮想シーンを構築し,その内部に戦略的に3D合成資産を配置する。
結果として得られたマルチビュー一貫性のあるデータセットは、自動運転車のためのマルチカメラ知覚ネットワークのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-03-22T17:49:11Z) - Development of a Realistic Crowd Simulation Environment for Fine-grained
Validation of People Tracking Methods [0.7223361655030193]
この研究は、群衆シミュレーションの拡張(CrowdSim2)を開発し、人追跡アルゴリズムの適用性を証明する。
シミュレータは非常に人気のあるUnity 3Dエンジンを使用して開発されており、特に環境におけるリアリズムの側面に焦点を当てている。
IOU-Tracker、Deep-Sort、Deep-TAMAという3つのトラッキング手法が生成されたデータセットの検証に使用された。
論文 参考訳(メタデータ) (2023-04-26T09:29:58Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation
Using Object Detectors and Analyzing Point Clouds at Target-Level [1.1999555634662635]
自律運転のためのニューラルネットワークに基づくLiDARオブジェクト検出アルゴリズムは、トレーニング、検証、テストのために大量のデータを必要とする。
ニューラルネットワークのトレーニングにシミュレーションデータを使用することで、シーン、シナリオ、分布の違いによるトレーニングデータとテストデータのドメインシフトが生じることを示す。
論文 参考訳(メタデータ) (2023-03-03T12:52:01Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
LiDARデータ上でディープニューラルネットワーク(DNN)をトレーニングするには、大規模なポイントワイドアノテーションが必要である。
シミュレーション・トゥ・リアル・ドメイン適応(SRDA)は、DNNを無制限の合成データと自動生成されたラベルで訓練する。
ePointDAは、自己教師付きドロップアウトノイズレンダリング、統計不変および空間適応型特徴アライメント、転送可能なセグメンテーション学習の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2020-09-07T23:46:08Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
融解したLiDAR点雲と単一LiDAR点雲との差について検討した。
抽出した軌道の評価は, 融合インフラストラクチャーアプローチが追跡結果を著しく増加させ, 数cm以内の精度に達することを示す。
論文 参考訳(メタデータ) (2020-06-22T10:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。