論文の概要: Unsupervised Graph Embeddings for Session-based Recommendation with Item Features
- arxiv url: http://arxiv.org/abs/2502.13763v1
- Date: Wed, 19 Feb 2025 14:23:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:58:30.716324
- Title: Unsupervised Graph Embeddings for Session-based Recommendation with Item Features
- Title(参考訳): 項目機能付きセッションベースレコメンデーションのための教師なしグラフ埋め込み
- Authors: Andreas Peintner, Marta Moscati, Emilia Parada-Cabaleiro, Markus Schedl, Eva Zangerle,
- Abstract要約: セッションベースのレコメンデーションシステムでは、予測はセッションにおけるユーザの前の振る舞いに基づいて行われる。
本稿では,グラフ表現にアイテム機能を直接組み込んだ新しいグラフ畳み込みネットワーク拡張法(GCNext)を提案する。
我々の柔軟な拡張は最先端のメソッドに簡単に組み込むことができ、MRR@20を最大12.79%向上させる。
- 参考スコア(独自算出の注目度): 10.067724849703321
- License:
- Abstract: In session-based recommender systems, predictions are based on the user's preceding behavior in the session. State-of-the-art sequential recommendation algorithms either use graph neural networks to model sessions in a graph or leverage the similarity of sessions by exploiting item features. In this paper, we combine these two approaches and propose a novel method, Graph Convolutional Network Extension (GCNext), which incorporates item features directly into the graph representation via graph convolutional networks. GCNext creates a feature-rich item co-occurrence graph and learns the corresponding item embeddings in an unsupervised manner. We show on three datasets that integrating GCNext into sequential recommendation algorithms significantly boosts the performance of nearest-neighbor methods as well as neural network models. Our flexible extension is easy to incorporate in state-of-the-art methods and increases the MRR@20 by up to 12.79%.
- Abstract(参考訳): セッションベースのレコメンデーションシステムでは、予測はセッションにおけるユーザの前の振る舞いに基づいて行われる。
最先端のシーケンシャルレコメンデーションアルゴリズムは、グラフニューラルネットワークを使用してグラフ内のセッションをモデル化するか、アイテム機能を利用してセッションの類似性を活用する。
本稿では,これら2つのアプローチを組み合わせて,グラフ畳み込みネットワークによるグラフ表現にアイテム機能を直接組み込む新しい手法であるグラフ畳み込みネットワーク拡張(GCNext)を提案する。
GCNextは機能豊富なアイテム共起グラフを作成し、教師なしの方法で対応するアイテムの埋め込みを学習する。
本稿では,GCNextを逐次レコメンデーションアルゴリズムに統合した3つのデータセットについて述べる。
我々の柔軟な拡張は最先端のメソッドに簡単に組み込むことができ、MRR@20を最大12.79%向上させる。
関連論文リスト
- Graph-Sequential Alignment and Uniformity: Toward Enhanced Recommendation Systems [51.716704243764994]
我々のフレームワークはグラフニューラルネットワーク(GNN)ベースのシーケンシャルレコメンデータを別個のサブモジュールとして使用し、同時に最適化された統合埋め込み空間を共同で共有する。
3つの実世界のデータセットの実験により、提案手法はどちらのアプローチも単独で大幅に性能が向上することを示した。
論文 参考訳(メタデータ) (2024-12-05T15:59:05Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
グラフ表現学習に自己教師付き学習機構を導入する。
本稿では,新しい自己教師型コンセンサス表現学習フレームワークを提案する。
提案手法はトポロジグラフと特徴グラフの2つの視点からグラフを扱う。
論文 参考訳(メタデータ) (2021-08-10T07:53:09Z) - Improved Representation Learning for Session-based Recommendation [0.0]
セッションベースのレコメンデーションシステムは、短期匿名セッションを用いてユーザの行動や嗜好をモデル化することで、ユーザに対して関連項目を提案する。
既存の方法はグラフニューラルネットワーク(GNN)を利用して、近隣のノードから情報を伝達し集約する。
我々は、よりリッチな表現学習を可能にする目標注意型GNNと組み合わせてトランスフォーマーを提案する。
論文 参考訳(メタデータ) (2021-07-04T00:57:28Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCNはグラフ学習に適したノード機能である。
エンドツーエンドでCatGCNを訓練し、半教師付きノード分類でそれを実証する。
論文 参考訳(メタデータ) (2020-09-11T09:25:17Z) - Hierarchical BiGraph Neural Network as Recommendation Systems [0.0]
本稿では,GNNをレコメンデーションシステムとして使用し,ビグラフフレームワークを用いてユーザイテム機能を構築する階層的アプローチを提案する。
実験の結果,現在の推薦システム手法と伝達性との競合性能が示された。
論文 参考訳(メタデータ) (2020-07-27T18:01:41Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
我々はRefined Graph Convolution Collaborative Filtering(RGCF)というGCNベースの新しい協調フィルタリングモデルを開発した。
RGCFはグラフ内の暗黙の高次連結性を捉えることができ、結果として得られるベクトル表現はより表現力が高い。
我々は3つの公開百万規模のデータセットに対して広範な実験を行い、我々のRGCFが最先端のモデルを大幅に上回っていることを実証した。
論文 参考訳(メタデータ) (2020-07-07T12:26:10Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。