Unsupervised Graph Embeddings for Session-based Recommendation with Item Features
- URL: http://arxiv.org/abs/2502.13763v1
- Date: Wed, 19 Feb 2025 14:23:18 GMT
- Title: Unsupervised Graph Embeddings for Session-based Recommendation with Item Features
- Authors: Andreas Peintner, Marta Moscati, Emilia Parada-Cabaleiro, Markus Schedl, Eva Zangerle,
- Abstract summary: In session-based recommender systems, predictions are based on the user's preceding behavior in the session.
We propose a novel method, Graph Convolutional Network Extension (GCNext), which incorporates item features directly into the graph representation.
Our flexible extension is easy to incorporate in state-of-the-art methods and increases the MRR@20 by up to 12.79%.
- Score: 10.067724849703321
- License:
- Abstract: In session-based recommender systems, predictions are based on the user's preceding behavior in the session. State-of-the-art sequential recommendation algorithms either use graph neural networks to model sessions in a graph or leverage the similarity of sessions by exploiting item features. In this paper, we combine these two approaches and propose a novel method, Graph Convolutional Network Extension (GCNext), which incorporates item features directly into the graph representation via graph convolutional networks. GCNext creates a feature-rich item co-occurrence graph and learns the corresponding item embeddings in an unsupervised manner. We show on three datasets that integrating GCNext into sequential recommendation algorithms significantly boosts the performance of nearest-neighbor methods as well as neural network models. Our flexible extension is easy to incorporate in state-of-the-art methods and increases the MRR@20 by up to 12.79%.
Related papers
- Graph-Sequential Alignment and Uniformity: Toward Enhanced Recommendation Systems [51.716704243764994]
Our framework uses Graph Neural Network (GNN)-based and sequential recommenders as separate submodules while sharing a unified embedding space optimized jointly.
Experiments on three real-world datasets demonstrate that the proposed method significantly outperforms using either approach alone.
arXiv Detail & Related papers (2024-12-05T15:59:05Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - Improved Representation Learning for Session-based Recommendation [0.0]
Session-based recommendation systems suggest relevant items to users by modeling user behavior and preferences using short-term anonymous sessions.
Existing methods leverage Graph Neural Networks (GNNs) that propagate and aggregate information from neighboring nodes.
We propose using a Transformer in combination with a target attentive GNN, which allows richer Representation Learning.
arXiv Detail & Related papers (2021-07-04T00:57:28Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - Hierarchical BiGraph Neural Network as Recommendation Systems [0.0]
We propose a hierarchical approach of using GNNs as recommendation systems and structuring the user-item features using a bigraph framework.
Our experimental results show competitive performance with current recommendation system methods and transferability.
arXiv Detail & Related papers (2020-07-27T18:01:41Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
We develop a new GCN-based Collaborative Filtering model, named Refined Graph convolution Collaborative Filtering(RGCF)
RGCF is more capable for capturing the implicit high-order connectivities inside the graph and the resultant vector representations are more expressive.
We conduct extensive experiments on three public million-size datasets, demonstrating that our RGCF significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2020-07-07T12:26:10Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.