A consensus set for the aggregation of partial rankings: the case of the Optimal Set of Bucket Orders Problem
- URL: http://arxiv.org/abs/2502.13769v1
- Date: Wed, 19 Feb 2025 14:32:16 GMT
- Title: A consensus set for the aggregation of partial rankings: the case of the Optimal Set of Bucket Orders Problem
- Authors: Juan A. Aledo, José A. Gámez, Alejandro Rosete,
- Abstract summary: In rank aggregation problems (RAP), the solution is usually a consensus ranking that generalizes a set of input orderings.
We propose to provide, as the solution to an RAP, a set of rankings to better explain the preferences expressed in the input orderings.
- Score: 46.752018687842344
- License:
- Abstract: In rank aggregation problems (RAP), the solution is usually a consensus ranking that generalizes a set of input orderings. There are different variants that differ not only in terms of the type of rankings that are used as input and output, but also in terms of the objective function employed to evaluate the quality of the desired output ranking. In contrast, in some machine learning tasks (e.g. subgroup discovery) or multimodal optimization tasks, attention is devoted to obtaining several models/results to account for the diversity in the input data or across the search landscape. Thus, in this paper we propose to provide, as the solution to an RAP, a set of rankings to better explain the preferences expressed in the input orderings. We exemplify our proposal through the Optimal Bucket Order Problem (OBOP), an RAP which consists in finding a single consensus ranking (with ties) that generalizes a set of input rankings codified as a precedence matrix. To address this, we introduce the Optimal Set of Bucket Orders Problem (OSBOP), a generalization of the OBOP that aims to produce not a single ranking as output but a set of consensus rankings. Experimental results are presented to illustrate this proposal, showing how, by providing a set of consensus rankings, the fitness of the solution significantly improves with respect to the one of the original OBOP, without losing comprehensibility.
Related papers
- Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models [63.714662435555674]
Large language models (LLMs) exhibit positional bias in how they use context.
We propose permutation self-consistency, a form of self-consistency over ranking list outputs of black-box LLMs.
Our approach improves scores from conventional inference by up to 7-18% for GPT-3.5 and 8-16% for LLaMA v2 (70B)
arXiv Detail & Related papers (2023-10-11T17:59:02Z) - Replace Scoring with Arrangement: A Contextual Set-to-Arrangement
Framework for Learning-to-Rank [40.81502990315285]
Learning-to-rank is a core technique in the top-N recommendation task, where an ideal ranker would be a mapping from an item set to an arrangement.
Most existing solutions fall in the paradigm of probabilistic ranking principle (PRP), i.e., first score each item in the candidate set and then perform a sort operation to generate the top ranking list.
We propose Set-To-Arrangement Ranking (STARank), a new framework directly generates the permutations of the candidate items without the need for individually scoring and sort operations.
arXiv Detail & Related papers (2023-08-05T12:22:26Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
We propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking.
xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics.
We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories.
arXiv Detail & Related papers (2023-07-27T07:42:44Z) - Learning to Select and Rank from Choice-Based Feedback: A Simple Nested Approach [10.293894471295205]
We study a ranking and selection problem of learning from choice-based feedback with dynamic assortments.
We present novel and simple algorithms for both learning goals.
arXiv Detail & Related papers (2023-07-13T05:05:30Z) - Subset Selection Based On Multiple Rankings in the Presence of Bias:
Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions [42.23968578772441]
We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest quality''
We show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings.
arXiv Detail & Related papers (2023-06-16T13:25:27Z) - Heuristic Search for Rank Aggregation with Application to Label Ranking [16.275063634853584]
We propose an effective hybrid evolutionary ranking algorithm to solve the rank aggregation problem.
The algorithm features a semantic crossover based on concordant pairs and a late acceptance local search reinforced by an efficient incremental evaluation technique.
Experiments are conducted to assess the algorithm, indicating a highly competitive performance on benchmark instances.
arXiv Detail & Related papers (2022-01-11T11:43:17Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - SetRank: A Setwise Bayesian Approach for Collaborative Ranking from
Implicit Feedback [50.13745601531148]
We propose a novel setwise Bayesian approach for collaborative ranking, namely SetRank, to accommodate the characteristics of implicit feedback in recommender system.
Specifically, SetRank aims at maximizing the posterior probability of novel setwise preference comparisons.
We also present the theoretical analysis of SetRank to show that the bound of excess risk can be proportional to $sqrtM/N$.
arXiv Detail & Related papers (2020-02-23T06:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.