Herglotz-NET: Implicit Neural Representation of Spherical Data with Harmonic Positional Encoding
- URL: http://arxiv.org/abs/2502.13777v2
- Date: Thu, 20 Feb 2025 08:20:03 GMT
- Title: Herglotz-NET: Implicit Neural Representation of Spherical Data with Harmonic Positional Encoding
- Authors: Théo Hanon, Nicolas Mil-Homens Cavaco, John Kiely, Laurent Jacques,
- Abstract summary: Implicit neural representations (INRs) have emerged as a promising alternative for high-fidelity data representation.
Herglotz-NET (HNET) is a novel INR architecture that employs a harmonic positional encoding based on complex Herglotz mappings.
Our results establish HNET as a scalable and flexible framework for accurate modeling of spherical data.
- Score: 4.2412715094420665
- License:
- Abstract: Representing and processing data in spherical domains presents unique challenges, primarily due to the curvature of the domain, which complicates the application of classical Euclidean techniques. Implicit neural representations (INRs) have emerged as a promising alternative for high-fidelity data representation; however, to effectively handle spherical domains, these methods must be adapted to the inherent geometry of the sphere to maintain both accuracy and stability. In this context, we propose Herglotz-NET (HNET), a novel INR architecture that employs a harmonic positional encoding based on complex Herglotz mappings. This encoding yields a well-posed representation on the sphere with interpretable and robust spectral properties. Moreover, we present a unified expressivity analysis showing that any spherical-based INR satisfying a mild condition exhibits a predictable spectral expansion that scales with network depth. Our results establish HNET as a scalable and flexible framework for accurate modeling of spherical data.
Related papers
- Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation [71.69331824668954]
Spectral variations pose a common challenge in analyzing hyperspectral images (HSI)
Low-rank tensor representation has emerged as a robust strategy, leveraging inherent correlations within HSI data.
We propose a novel model for irregular tensor lowrank representation tailored to efficiently model irregular 3D cubes.
arXiv Detail & Related papers (2024-10-24T02:56:22Z) - Invertible Neural Warp for NeRF [29.00183106905031]
This paper tackles the simultaneous optimization of pose and Neural Radiance Fields (NeRF)
We propose a novel over parameterized representation that models camera poses as learnable rigid warp functions.
We present results on synthetic and real-world datasets, and demonstrate that our approach outperforms existing baselines in terms of pose estimation and high-fidelity reconstruction.
arXiv Detail & Related papers (2024-07-17T07:14:08Z) - SphereDiffusion: Spherical Geometry-Aware Distortion Resilient Diffusion Model [63.685132323224124]
Controllable spherical panoramic image generation holds substantial applicative potential across a variety of domains.
In this paper, we introduce a novel framework of SphereDiffusion to address these unique challenges.
Experiments on Structured3D dataset show that SphereDiffusion significantly improves the quality of controllable spherical image generation and relatively reduces around 35% FID on average.
arXiv Detail & Related papers (2024-03-15T06:26:46Z) - Hybrid Neural Representations for Spherical Data [25.080272865553003]
We introduce a novel approach named Hybrid Neural Representations for Spherical data (HNeR-S)
Our main idea is to use spherical feature-grids to obtain positional features which are combined with a multilayer perception to predict the target signal.
We consider feature-grids with equirectangular and hierarchical equal area isolatitude pixelization structures that align with weather data and CMB data, respectively.
arXiv Detail & Related papers (2024-02-05T13:03:00Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
We present a novel type of neural fields that uses general radial bases for signal representation.
Our method builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals.
When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
arXiv Detail & Related papers (2023-09-27T06:32:05Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Online Neural Path Guiding with Normalized Anisotropic Spherical
Gaussians [20.68953631807367]
We propose a novel online framework to learn the spatial-varying density model with a single small neural network.
Our framework learns the distribution in a progressive manner and does not need any warm-up phases.
arXiv Detail & Related papers (2023-03-11T05:22:42Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Implicit Neural Representations (INRs) are making strides as a novel and effective representation.
We propose a novel HSI reconstruction model based on INR which represents HSI by a continuous function mapping a spatial coordinate to its corresponding spectral radiance values.
arXiv Detail & Related papers (2021-12-20T14:07:54Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
We present a compact neural network-based representation of reflectance BRDF data.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling.
We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets.
arXiv Detail & Related papers (2021-02-11T12:00:24Z) - Scattering Networks on the Sphere for Scalable and Rotationally
Equivariant Spherical CNNs [2.453627017761322]
We develop scattering networks constructed on the sphere that provide a powerful representational space for spherical data.
By integrating scattering networks as an additional type of layer in the generalized spherical CNN framework, we show how they can be leveraged to scale spherical CNNs to the high resolution data typical of many practical applications.
arXiv Detail & Related papers (2021-02-04T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.