Time-Optimal Quantum Driving by Variational Circuit Learning
- URL: http://arxiv.org/abs/2211.00405v1
- Date: Tue, 1 Nov 2022 11:53:49 GMT
- Title: Time-Optimal Quantum Driving by Variational Circuit Learning
- Authors: Tangyou Huang, Yongcheng Ding, L\'eonce Dupays, Yue Ban, Man-Hong
Yung, Adolfo del Campo, and Xi Chen
- Abstract summary: Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
- Score: 2.9582851733261286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The simulation of quantum dynamics on a digital quantum computer with
parameterized circuits has widespread applications in fundamental and applied
physics and chemistry. In this context, using the hybrid quantum-classical
algorithm, combining classical optimizers and quantum computers, is a
competitive strategy for solving specific problems. We put forward its use for
optimal quantum control. We simulate the wave-packet expansion of a trapped
quantum particle on a quantum device with a finite number of qubits. We then
use circuit learning based on gradient descent to work out the intrinsic
connection between the control phase transition and the quantum speed limit
imposed by unitary dynamics. We further discuss the robustness of our method
against errors and demonstrate the absence of barren plateaus in the circuit.
The combination of digital quantum simulation and hybrid circuit learning opens
up new prospects for quantum optimal control.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
Matrix Product States (MPS) and Operators (MPO) have been proven to be a powerful tool to study quantum many-body systems.
We show that using classical knowledge in the form of tensor networks provides a way to better use limited quantum resources.
arXiv Detail & Related papers (2023-05-30T17:21:52Z) - Hybrid quantum gap estimation algorithm using a filtered time series [0.0]
We prove that classical post-processing, i.e., long-time filtering of an offline time series, exponentially improves the circuit depth needed for quantum time evolution.
We apply the filtering method to the construction of a hybrid quantum-classical algorithm to estimate energy gap.
Our findings set the stage for unbiased quantum simulation to offer memory advantage in the near term.
arXiv Detail & Related papers (2022-12-28T18:59:59Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
We build dynamic quantum circuits on a superconducting-based quantum system.
We exploit one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version.
We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage.
arXiv Detail & Related papers (2021-02-02T18:51:23Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.