From Tools to Teammates: Evaluating LLMs in Multi-Session Coding Interactions
- URL: http://arxiv.org/abs/2502.13791v1
- Date: Wed, 19 Feb 2025 14:58:04 GMT
- Title: From Tools to Teammates: Evaluating LLMs in Multi-Session Coding Interactions
- Authors: Nathanaƫl Carraz Rakotonirina, Mohammed Hamdy, Jon Ander Campos, Lucas Weber, Alberto Testoni, Marzieh Fadaee, Sandro Pezzelle, Marco Del Tredici,
- Abstract summary: MemoryCode is a dataset designed to test Large Language Models' ability to track and execute simple coding instructions amid irrelevant information.
Our results highlight a fundamental limitation of current LLMs, restricting their ability to collaborate effectively in long interactions.
- Score: 9.344348861402928
- License:
- Abstract: Large Language Models (LLMs) are increasingly used in working environments for a wide range of tasks, excelling at solving individual problems in isolation. However, are they also able to effectively collaborate over long-term interactions? To investigate this, we introduce MemoryCode, a synthetic multi-session dataset designed to test LLMs' ability to track and execute simple coding instructions amid irrelevant information, simulating a realistic setting. While all the models we tested handle isolated instructions well, even the performance of state-of-the-art models like GPT-4o deteriorates when instructions are spread across sessions. Our analysis suggests this is due to their failure to retrieve and integrate information over long instruction chains. Our results highlight a fundamental limitation of current LLMs, restricting their ability to collaborate effectively in long interactions.
Related papers
- Teaching Models to Improve on Tape [30.330699770714165]
Large Language Models (LLMs) often struggle when prompted to generate content under specific constraints.
Recent works have shown that LLMs can benefit from such "corrective feedback"
We introduce an RL framework for teaching models to use such rewards, by simulating interaction sessions, and rewarding the model according to its ability to satisfy the constraints.
arXiv Detail & Related papers (2024-11-03T08:49:55Z) - Beyond Prompts: Dynamic Conversational Benchmarking of Large Language Models [0.0]
We introduce a dynamic benchmarking system for conversational agents that evaluates their performance through a single, simulated, and lengthy user interaction.
We context switch regularly to interleave the tasks, which constructs a realistic testing scenario in which we assess the Long-Term Memory, Continual Learning, and Information Integration capabilities of the agents.
arXiv Detail & Related papers (2024-09-30T12:01:29Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
We propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks.
The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions.
We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
arXiv Detail & Related papers (2024-07-15T07:43:55Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks.
Their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language.
We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories.
arXiv Detail & Related papers (2024-01-12T12:10:28Z) - LLM-in-the-loop: Leveraging Large Language Model for Thematic Analysis [18.775126929754833]
Thematic analysis (TA) has been widely used for analyzing qualitative data in many disciplines and fields.
Human coders develop and deepen their data interpretation and coding over multiple iterations, making TA labor-intensive and time-consuming.
We propose a human-LLM collaboration framework (i.e., LLM-in-the-loop) to conduct TA with in-context learning (ICL)
arXiv Detail & Related papers (2023-10-23T17:05:59Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
Large language models (LLMs) encode a vast amount of world knowledge acquired from massive text datasets.
LLMs can assist an embodied agent in solving complex sequential decision making tasks by providing high-level instructions.
We propose When2Ask, a reinforcement learning based approach that learns when it is necessary to query LLMs for high-level instructions.
arXiv Detail & Related papers (2023-06-06T11:49:09Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.