MagicGeo: Training-Free Text-Guided Geometric Diagram Generation
- URL: http://arxiv.org/abs/2502.13855v1
- Date: Wed, 19 Feb 2025 16:20:14 GMT
- Title: MagicGeo: Training-Free Text-Guided Geometric Diagram Generation
- Authors: Junxiao Wang, Ting Zhang, Heng Yu, Jingdong Wang, Hua Huang,
- Abstract summary: This paper presents MagicGeo, a training-free framework for generating geometric diagrams from textual descriptions.
MagicGeo formulates the diagram generation process as a coordinate optimization problem, ensuring geometric correctness through a formal language solver, and then employs coordinate-aware generation.
We introduce MagicGeoBench, a benchmark dataset of 220 geometric diagram descriptions, and demonstrate that MagicGeo outperforms current methods in both qualitative and quantitative evaluations.
- Score: 39.30134393001854
- License:
- Abstract: Geometric diagrams are critical in conveying mathematical and scientific concepts, yet traditional diagram generation methods are often manual and resource-intensive. While text-to-image generation has made strides in photorealistic imagery, creating accurate geometric diagrams remains a challenge due to the need for precise spatial relationships and the scarcity of geometry-specific datasets. This paper presents MagicGeo, a training-free framework for generating geometric diagrams from textual descriptions. MagicGeo formulates the diagram generation process as a coordinate optimization problem, ensuring geometric correctness through a formal language solver, and then employs coordinate-aware generation. The framework leverages the strong language translation capability of large language models, while formal mathematical solving ensures geometric correctness. We further introduce MagicGeoBench, a benchmark dataset of 220 geometric diagram descriptions, and demonstrate that MagicGeo outperforms current methods in both qualitative and quantitative evaluations. This work provides a scalable, accurate solution for automated diagram generation, with significant implications for educational and academic applications.
Related papers
- GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training [45.42400674977197]
GeoX is a multi-modal large model focusing on geometric understanding and reasoning tasks.
We introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora.
We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals.
arXiv Detail & Related papers (2024-12-16T15:20:03Z) - Geo-LLaVA: A Large Multi-Modal Model for Solving Geometry Math Problems with Meta In-Context Learning [4.4615747404424395]
Geometry mathematics problems pose significant challenges for large language models (LLMs)
We collect a geometry question-answer dataset by sourcing geometric data from Chinese high school education websites, referred to as GeoMath.
We propose a Large Multi-modal Model (LMM) framework named Geo-LLaVA, which incorporates retrieval augmentation with supervised fine-tuning (SFT) in the training stage, called meta-training, and employs in-context learning (ICL) during inference to improve performance.
arXiv Detail & Related papers (2024-12-12T07:34:09Z) - Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver [11.69164802295844]
We introduce a new framework that integrates visual features, geometric formal language, and natural language representations.
We propose a novel synthetic data approach and create a large-scale geometric dataset, SynthGeo228K, annotated with both formal and natural language captions.
Our framework improves MLLMs' ability to process geometric diagrams and extends their application to open-ended tasks on the formalgeo7k dataset.
arXiv Detail & Related papers (2024-09-06T12:11:06Z) - AutoGeo: Automating Geometric Image Dataset Creation for Enhanced Geometry Understanding [18.223835101407637]
This paper introduces AutoGeo, a novel approach for automatically generating mathematical geometric images.
By leveraging precisely defined geometric clauses, AutoGeo-100k contains a wide variety of geometric shapes.
Experimental results indicate significant improvements in the model's ability in handling geometric images.
arXiv Detail & Related papers (2024-08-28T14:49:26Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
This paper presents a survey of data structures, models, and applications related to geometric GNNs.
We provide a unified view of existing models from the geometric message passing perspective.
We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
We introduce a novel approach to learn geometries such as depth and surface normal from images while incorporating geometric context.
Our approach extracts geometric context that encodes the geometric variations present in the input image and correlates depth estimation with geometric constraints.
Our method unifies depth and surface normal estimations within a cohesive framework, which enables the generation of high-quality 3D geometry from images.
arXiv Detail & Related papers (2024-02-08T17:57:59Z) - Geometric Representation Learning for Document Image Rectification [137.75133384124976]
We present DocGeoNet for document image rectification by introducing explicit geometric representation.
Our motivation arises from the insight that 3D shape provides global unwarping cues for rectifying a distorted document image.
Experiments show the effectiveness of our framework and demonstrate the superiority of our framework over state-of-the-art methods.
arXiv Detail & Related papers (2022-10-15T01:57:40Z) - Inter-GPS: Interpretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning [123.06420835072225]
We construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language.
We propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem solver (Inter-GPS)
Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.
arXiv Detail & Related papers (2021-05-10T07:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.