GeoSDF: Plane Geometry Diagram Synthesis via Signed Distance Field
- URL: http://arxiv.org/abs/2506.13492v1
- Date: Mon, 16 Jun 2025 13:50:55 GMT
- Title: GeoSDF: Plane Geometry Diagram Synthesis via Signed Distance Field
- Authors: Chengrui Zhang, Maizhen Ning, Zihao Zhou, Jie Sun, Kaizhu Huang, Qiufeng Wang,
- Abstract summary: Plane Geometry Diagram Synthesis has been a crucial task in computer graphics, with applications ranging from educational tools to AI-driven mathematical reasoning.<n>We propose a novel framework GeoSDF to automatically generate diagrams efficiently and accurately with Signed Distance Field (SDF)<n>In our GeoSDF, we define a symbolic language to easily represent geometric elements and those constraints, and our synthesized geometry diagrams can be self-verified in the SDF.
- Score: 23.189928895665467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Plane Geometry Diagram Synthesis has been a crucial task in computer graphics, with applications ranging from educational tools to AI-driven mathematical reasoning. Traditionally, we rely on computer tools (e.g., Matplotlib and GeoGebra) to manually generate precise diagrams, but it usually requires huge, complicated calculations cost. Recently, researchers start to work on learning-based methods (e.g., Stable Diffusion and GPT4) to automatically generate diagrams, saving operational cost but usually suffering from limited realism and insufficient accuracy. In this paper, we propose a novel framework GeoSDF to automatically generate diagrams efficiently and accurately with Signed Distance Field (SDF). Specifically, we first represent geometric elements in the SDF, then construct a series of constraint functions to represent geometric relationships, next we optimize such constraint functions to get an optimized field of both elements and constraints, finally by rendering the optimized field, we can obtain the synthesized diagram. In our GeoSDF, we define a symbolic language to easily represent geometric elements and those constraints, and our synthesized geometry diagrams can be self-verified in the SDF, ensuring both mathematical accuracy and visual plausibility. In experiments, our GeoSDF synthesized both normal high-school level and IMO-level geometry diagrams. Through both qualitative and quantitative analysis, we can see that synthesized diagrams are realistic and accurate, and our synthesizing process is simple and efficient. Furthermore, we obtain a very high accuracy of solving geometry problems (over 95\% while the current SOTA accuracy is around 75%) by leveraging our self-verification property. All of these demonstrate the advantage of GeoSDF, paving the way for more sophisticated, accurate, and flexible generation of geometric diagrams for a wide array of applications.
Related papers
- Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration [57.95306827012784]
We propose GeoGen, a pipeline that can automatically generate step-wise reasoning paths for geometry diagrams.<n>By leveraging the precise symbolic reasoning, textbfGeoGen produces large-scale, high-quality question-answer pairs.<n>We train textbfGeoLogic, a Large Language Model (LLM), using synthetic data generated by GeoGen.
arXiv Detail & Related papers (2025-04-17T09:13:46Z) - MagicGeo: Training-Free Text-Guided Geometric Diagram Generation [39.30134393001854]
This paper presents MagicGeo, a training-free framework for generating geometric diagrams from textual descriptions.<n>MagicGeo formulates the diagram generation process as a coordinate optimization problem, ensuring geometric correctness through a formal language solver, and then employs coordinate-aware generation.<n>We introduce MagicGeoBench, a benchmark dataset of 220 geometric diagram descriptions, and demonstrate that MagicGeo outperforms current methods in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2025-02-19T16:20:14Z) - GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training [45.42400674977197]
GeoX is a multi-modal large model focusing on geometric understanding and reasoning tasks.<n>We introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora.<n>We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals.
arXiv Detail & Related papers (2024-12-16T15:20:03Z) - Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver [11.69164802295844]
We introduce a new framework that integrates visual features, geometric formal language, and natural language representations.
We propose a novel synthetic data approach and create a large-scale geometric dataset, SynthGeo228K, annotated with both formal and natural language captions.
Our framework improves MLLMs' ability to process geometric diagrams and extends their application to open-ended tasks on the formalgeo7k dataset.
arXiv Detail & Related papers (2024-09-06T12:11:06Z) - Outdoor Scene Extrapolation with Hierarchical Generative Cellular Automata [70.9375320609781]
We aim to generate fine-grained 3D geometry from large-scale sparse LiDAR scans, abundantly captured by autonomous vehicles (AV)
We propose hierarchical Generative Cellular Automata (hGCA), a spatially scalable 3D generative model, which grows geometry with local kernels following, in a coarse-to-fine manner, equipped with a light-weight planner to induce global consistency.
arXiv Detail & Related papers (2024-06-12T14:56:56Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications [71.809127869349]
This paper formalizes geometric graph as the data structure, on top of which we provide a unified view of existing models from the geometric message passing perspective.<n>We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
We learn continuous representations of graphs in spaces of symmetric matrices over C.
These spaces offer a rich geometry that simultaneously admits hyperbolic and Euclidean subspaces.
The proposed models are able to automatically adapt to very dissimilar arrangements without any apriori estimates of graph features.
arXiv Detail & Related papers (2021-05-11T18:14:52Z) - Graph Geometry Interaction Learning [41.10468385822182]
We develop a novel Geometry Interaction Learning (GIL) method for graphs, a well-suited and efficient alternative for learning abundant geometric properties in graph.
Our method endows each node the freedom to determine the importance of each geometry space via a flexible dual feature interaction learning and probability assembling mechanism.
Promising experimental results are presented for five benchmark datasets on node classification and link prediction tasks.
arXiv Detail & Related papers (2020-10-23T02:40:28Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
We introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes.
This supports a range of novel shape generation applications with disentangled control, such as of structure (geometry) while keeping geometry (structure) unchanged.
Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2020-08-12T17:06:51Z) - Graph Signal Processing for Geometric Data and Beyond: Theory and
Applications [55.81966207837108]
Graph Signal Processing (GSP) enables processing signals that reside on irregular domains.
GSP methodologies for geometric data in a unified manner by bridging the connections between geometric data and graphs.
Recently developed Graph Neural Networks (GNNs) interpret the operation of these networks from the perspective of GSP.
arXiv Detail & Related papers (2020-08-05T03:20:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.