SPEX: Scaling Feature Interaction Explanations for LLMs
- URL: http://arxiv.org/abs/2502.13870v1
- Date: Wed, 19 Feb 2025 16:49:55 GMT
- Title: SPEX: Scaling Feature Interaction Explanations for LLMs
- Authors: Justin Singh Kang, Landon Butler, Abhineet Agarwal, Yigit Efe Erginbas, Ramtin Pedarsani, Kannan Ramchandran, Bin Yu,
- Abstract summary: Spectral Explainer (SPEX) is a model-agnostic interaction attribution algorithm that efficiently scales to large input lengths.<n>For large inputs, SPEX outperforms marginal attribution methods by up to 20%.<n>For one of our datasets, HotpotQA, SPEX provides interactions that align with human annotations.
- Score: 22.651273612351346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have revolutionized machine learning due to their ability to capture complex interactions between input features. Popular post-hoc explanation methods like SHAP provide marginal feature attributions, while their extensions to interaction importances only scale to small input lengths ($\approx 20$). We propose Spectral Explainer (SPEX), a model-agnostic interaction attribution algorithm that efficiently scales to large input lengths ($\approx 1000)$. SPEX exploits underlying natural sparsity among interactions -- common in real-world data -- and applies a sparse Fourier transform using a channel decoding algorithm to efficiently identify important interactions. We perform experiments across three difficult long-context datasets that require LLMs to utilize interactions between inputs to complete the task. For large inputs, SPEX outperforms marginal attribution methods by up to 20% in terms of faithfully reconstructing LLM outputs. Further, SPEX successfully identifies key features and interactions that strongly influence model output. For one of our datasets, HotpotQA, SPEX provides interactions that align with human annotations. Finally, we use our model-agnostic approach to generate explanations to demonstrate abstract reasoning in closed-source LLMs (GPT-4o mini) and compositional reasoning in vision-language models.
Related papers
- ProxySPEX: Inference-Efficient Interpretability via Sparse Feature Interactions in LLMs [14.222006330730311]
Large Language Models (LLMs) have achieved remarkable performance by capturing complex interactions between input features.<n>To identify these interactions, most existing approaches require enumerating all possible combinations of features up to a given order.<n>We propose ProxySPEX, an interaction attribution algorithm that fits gradient boosted trees to masked outputs and then extracts the important interactions.
arXiv Detail & Related papers (2025-05-23T05:44:01Z) - Full-Stack Optimized Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation [44.685176786857284]
We propose ReLLaX (Retrieval-enhanced Large Language models Plus), a framework offering optimization across data, prompt, and parameter levels.
At the data level, we introduce Semantic User Behavior Retrieval (SUBR) to reduce sequence heterogeneity, making it easier for LLMs to extract key information.
For prompt-level enhancement, we employ Soft Prompt Augmentation (SPA) to inject collaborative knowledge, aligning item representations with recommendation tasks.
At the parameter level, we propose Component Fully-interactive LoRA (CFLoRA), which enhances LoRA's expressiveness by enabling interactions between its components
arXiv Detail & Related papers (2025-01-23T03:05:13Z) - GMoE: Empowering LLMs Fine-Tuning via MoE Graph Collaboration [39.302800055216764]
We introduce a novel MoE graph-based framework $textbfGMoE$, aimed at enhancing the collaboration among multiple experts.<n>In GMoE, a graph router function is designed to capture the collaboration signals among experts.<n>We put forward two coordination strategies in GMoE: the $textitPoisson distribution-based distinction strategy and the $textitNormal distribution-based balance strategy.
arXiv Detail & Related papers (2024-12-18T02:18:57Z) - LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - The Labyrinth of Links: Navigating the Associative Maze of Multi-modal LLMs [42.72336063802124]
Multi-modal Large Language Models (MLLMs) have exhibited impressive capability.
Many deficiencies of MLLMs have been found compared to human intelligence, $textite.g.$, hallucination.
We propose benchmarking an essential but usually overlooked intelligence: $textbfassociation$, a human's basic capability to link observation and prior practice memory.
arXiv Detail & Related papers (2024-10-02T10:58:54Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.<n>We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - MMRel: A Relation Understanding Benchmark in the MLLM Era [72.95901753186227]
Multi-Modal Relation Understanding (MMRel) is a benchmark that features large-scale, high-quality, and diverse data on inter-object relations.
MMRel is ideal for evaluating MLLMs on relation understanding, as well as for fine-tuning MLLMs to enhance relation comprehension capability.
arXiv Detail & Related papers (2024-06-13T13:51:59Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
In real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed.
These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing Sequential Recommendation systems.
We propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR) to address these challenges.
arXiv Detail & Related papers (2024-05-31T07:24:42Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTL is a novel post-processing framework that operates agnostically across tasks and models.
It identifies biases, proposes resolutions, and guides the model to self-debias its outputs.
This approach minimizes computational costs and preserves model performance.
arXiv Detail & Related papers (2024-03-01T00:02:37Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
We introduce a novel tool invocation pipeline designed to control massive real-world APIs.
This pipeline mirrors the human task-solving process, addressing complicated real-life user queries.
Empirical evaluations of our Sum2Act pipeline on the ToolBench benchmark show significant performance improvements.
arXiv Detail & Related papers (2024-02-28T08:42:23Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.