Triad: Vision Foundation Model for 3D Magnetic Resonance Imaging
- URL: http://arxiv.org/abs/2502.14064v1
- Date: Wed, 19 Feb 2025 19:31:52 GMT
- Title: Triad: Vision Foundation Model for 3D Magnetic Resonance Imaging
- Authors: Shansong Wang, Mojtaba Safari, Qiang Li, Chih-Wei Chang, Richard LJ Qiu, Justin Roper, David S. Yu, Xiaofeng Yang,
- Abstract summary: We propose Triad, a vision foundation model for 3D MRI.
Triad adopts a widely used autoencoder architecture to learn robust representations from 131,170 3D MRI volumes.
We evaluate Triad across three tasks, namely, organ/tumor segmentation, organ/cancer classification, and medical image registration.
- Score: 3.7942449131350413
- License:
- Abstract: Vision foundation models (VFMs) are pre-trained on extensive image datasets to learn general representations for diverse types of data. These models can subsequently be fine-tuned for specific downstream tasks, significantly boosting performance across a broad range of applications. However, existing vision foundation models that claim to be applicable to various radiology tasks are mostly pre-trained on 3D computed tomography (CT), which benefits from the availability of extensive 3D CT databases. Significant differences between CT and magnetic resonance imaging (MRI) in imaging principles, signal characteristics, and data distribution may hinder their practical performance and versatility in MRI-specific applications. Here, we propose Triad, a vision foundation model for 3D MRI. Triad adopts a widely used autoencoder architecture to learn robust representations from 131,170 3D MRI volumes and uses organ-independent imaging descriptions to constrain the semantic distribution of the visual modality. The above pre-training dataset is called Triad-131K, which is currently the largest 3D MRI pre-training dataset. We evaluate Triad across three tasks, namely, organ/tumor segmentation, organ/cancer classification, and medical image registration, in two data modalities (within-domain and out-of-domain) settings using 25 downstream datasets. By initializing models with Triad's pre-trained weights, nnUNet-Triad improves segmentation performance by 6.88% compared to nnUNet-Scratch across 17 datasets. Swin-B-Triad achieves a 3.97% improvement over Swin-B-Scratch in classification tasks across five datasets. SwinUNETR-Triad improves by 4.00% compared to SwinUNETR-Scratch in registration tasks across two datasets. Our study demonstrates that pre-training can maximize performance when the data modalities and organs of upstream and downstream tasks are consistent.
Related papers
- MRI Reconstruction with Regularized 3D Diffusion Model (R3DM) [2.842800539489865]
We propose a 3D MRI reconstruction method that leverages a regularized 3D diffusion model combined with optimization method.
By incorporating diffusion based priors, our method improves image quality, reduces noise, and enhances the overall fidelity of 3D MRI reconstructions.
arXiv Detail & Related papers (2024-12-25T00:55:05Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Diff3Dformer: Leveraging Slice Sequence Diffusion for Enhanced 3D CT Classification with Transformer Networks [5.806035963947936]
We propose a Diffusion-based 3D Vision Transformer (Diff3Dformer) to aggregate repetitive information within 3D CT scans.
Our method exhibits improved performance on two different scales of small datasets of 3D lung CT scans.
arXiv Detail & Related papers (2024-06-24T23:23:18Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Multiscale Metamorphic VAE for 3D Brain MRI Synthesis [5.060516201839319]
Generative modeling of 3D brain MRIs presents difficulties in achieving high visual fidelity while ensuring sufficient coverage of the data distribution.
In this work, we propose to address this challenge with composable, multiscale morphological transformations in a variational autoencoder framework.
We show substantial performance improvements in FID while retaining comparable, or superior, reconstruction quality compared to prior work based on VAEs and generative adversarial networks (GANs)
arXiv Detail & Related papers (2023-01-09T09:15:30Z) - Segmenting white matter hyperintensities on isotropic three-dimensional
Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep
learning tools on norwegian imaging database [0.0]
White matter hyperintensities (WMHs) are a hallmark of cerebral small vessel disease and Alzheimer's disease (AD)
Current study details the deployment of deep learning tools to enable automated WMH segmentation and characterization from 3D FLAIR-weighted images.
arXiv Detail & Related papers (2022-07-18T09:36:44Z) - Advancing 3D Medical Image Analysis with Variable Dimension Transform
based Supervised 3D Pre-training [45.90045513731704]
This paper revisits an innovative yet simple fully-supervised 3D network pre-training framework.
With a redesigned 3D network architecture, reformulated natural images are used to address the problem of data scarcity.
Comprehensive experiments on four benchmark datasets demonstrate that the proposed pre-trained models can effectively accelerate convergence.
arXiv Detail & Related papers (2022-01-05T03:11:21Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.