論文の概要: A Racing Dataset and Baseline Model for Track Detection in Autonomous Racing
- arxiv url: http://arxiv.org/abs/2502.14068v1
- Date: Wed, 19 Feb 2025 19:43:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:44.731216
- Title: A Racing Dataset and Baseline Model for Track Detection in Autonomous Racing
- Title(参考訳): 自律走行におけるトラック検出のためのレーシングデータセットとベースラインモデル
- Authors: Shreya Ghosh, Yi-Huan Chen, Ching-Hsiang Huang, Abu Shafin Mohammad Mahdee Jameel, Chien Chou Ho, Aly El Gamal, Samuel Labi,
- Abstract要約: RoRaTrackは、トラック検出のためのレースシナリオからの注釈付きマルチカメライメージデータを含む、新しいデータセットである。
我々はこれらの課題に効果的に対処するGAN(Generative Adversarial Network)に基づくベースラインモデルであるRaceGANを提案する。
提案モデルは,トラック検出における現在の最先端機械学習モデルと比較して,優れた性能を示す。
- 参考スコア(独自算出の注目度): 8.652993697080147
- License:
- Abstract: A significant challenge in racing-related research is the lack of publicly available datasets containing raw images with corresponding annotations for the downstream task. In this paper, we introduce RoRaTrack, a novel dataset that contains annotated multi-camera image data from racing scenarios for track detection. The data is collected on a Dallara AV-21 at a racing circuit in Indiana, in collaboration with the Indy Autonomous Challenge (IAC). RoRaTrack addresses common problems such as blurriness due to high speed, color inversion from the camera, and absence of lane markings on the track. Consequently, we propose RaceGAN, a baseline model based on a Generative Adversarial Network (GAN) that effectively addresses these challenges. The proposed model demonstrates superior performance compared to current state-of-the-art machine learning models in track detection. The dataset and code for this work are available at github.com/RaceGAN.
- Abstract(参考訳): レース関連研究における重要な課題は、下流タスクに対応するアノテーションを備えた生画像を含む公開データセットの欠如である。
本稿では,トラック検出のためのレースシナリオから,注釈付きマルチカメラ画像データを含む新しいデータセットであるRoRaTrackを紹介する。
データはインディアナ州のレースサーキットにあるダララ AV-21で収集され、インディ・自律チャレンジ(IAC)と共同で行われる。
RoRaTrackは、高速によるぼやけ、カメラからのカラーインバージョン、トラック上の車線マークの欠如など、一般的な問題に対処する。
そこで我々は,これらの課題に効果的に対処するGAN(Generative Adversarial Network)に基づくベースラインモデルであるRaceGANを提案する。
提案モデルは,トラック検出における現在の最先端機械学習モデルと比較して,優れた性能を示す。
この作業のデータセットとコードはgithub.com/RaceGANで公開されている。
関連論文リスト
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
本稿では,自律走行シミュレーションに特化して設計された新しい駆動ビュー合成データセットとベンチマークを提案する。
データセットには、トレーニング軌跡から1-4mずれて取得した画像のテストが含まれているため、ユニークなものだ。
我々は、フロントオンリーおよびマルチカメラ設定下で、既存のNVSアプローチを評価するための最初の現実的なベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-26T14:00:21Z) - Reading Between the Mud: A Challenging Motorcycle Racer Number Dataset [38.719032057630024]
本稿では,オフロードオートバイレーサー数データセット(RnD)を紹介する。
RnDには、オフロード競技でオートバイレーサーを描いたプロのモータースポーツ写真家の2,411枚の画像が含まれている。
データセットには5,578個の手書きの注釈付きバウンディングボックスがあり、数字と文字が転写されている。
論文 参考訳(メタデータ) (2023-11-14T21:31:47Z) - How to Build a Curb Dataset with LiDAR Data for Autonomous Driving [11.632427050596728]
ビデオカメラと3D LiDARは、検出を抑えるために自動運転車に搭載されている。
カメラベースストレッチ検出手法は、難解な照明条件に悩まされる。
テンプレートアノテーションや効率的なテンプレートラベリングアプローチを備えたデータセットは、要求が高い。
論文 参考訳(メタデータ) (2021-10-08T08:32:37Z) - A Pedestrian Detection and Tracking Framework for Autonomous Cars:
Efficient Fusion of Camera and LiDAR Data [0.17205106391379021]
本稿では,カメラとLiDARセンサデータを用いた歩行者検出と追跡のための新しい手法を提案する。
検出フェーズは、LiDARストリームを計算的に抽出可能な深度画像に変換し、さらに、歩行者候補を特定するディープニューラルネットワークを開発する。
トラッキングフェーズは、Kalmanフィルタ予測と、シーン内の複数の歩行者を追跡するための光フローアルゴリズムの組み合わせである。
論文 参考訳(メタデータ) (2021-08-27T16:16:01Z) - Track without Appearance: Learn Box and Tracklet Embedding with Local
and Global Motion Patterns for Vehicle Tracking [45.524183249765244]
車両追跡は多目的追跡(MOT)分野において重要な課題である。
本稿では,外見情報のない車両追跡における動作パターンの重要性について検討する。
本稿では, 長期追跡のための関連課題を, 排他的かつ完全な運動情報を用いて解決する手法を提案する。
論文 参考訳(メタデータ) (2021-08-13T02:27:09Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
深部交通光検出器のための人工的な交通関連トレーニングデータを生成する手法を提案する。
このデータは、任意の画像背景の上に偽のトラフィックシーンをブレンドするために、基本的な非現実的なコンピュータグラフィックスを用いて生成される。
また、交通信号データセットの本質的なデータ不均衡問題にも対処し、主に黄色い状態のサンプルの少なさによって引き起こされる。
論文 参考訳(メタデータ) (2020-11-07T19:57:22Z) - Jointly Modeling Motion and Appearance Cues for Robust RGB-T Tracking [85.333260415532]
我々はRGBと熱(T)の両モードの融合重量マップを推定する新しい後期融合法を開発した。
外観キューが信頼できない場合には、動作キューを考慮に入れ、トラッカーを堅牢にする。
最近の3つのRGB-T追跡データセットの多くの結果から、提案したトラッカーは他の最先端のアルゴリズムよりも大幅に性能が向上していることが示された。
論文 参考訳(メタデータ) (2020-07-04T08:11:33Z) - Anomalous Motion Detection on Highway Using Deep Learning [14.617786106427834]
本稿では,新しい異常検出データセットであるハイウェイ交通異常(HTA)データセットを提案する。
我々は、最先端のディープラーニング異常検出モデルを評価し、これらの手法に新しいバリエーションを提案する。
論文 参考訳(メタデータ) (2020-06-15T05:40:11Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
ドローンによる車両検出は、空中画像中の車両の位置とカテゴリーを見つけることを目的としている。
我々はDroneVehicleと呼ばれる大規模ドローンベースのRGB赤外線車両検出データセットを構築した。
私たちのDroneVehicleは28,439RGBの赤外線画像を収集し、都市道路、住宅地、駐車場、その他のシナリオを昼から夜までカバーしています。
論文 参考訳(メタデータ) (2020-03-05T05:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。