論文の概要: Regression in EO: Are VLMs Up to the Challenge?
- arxiv url: http://arxiv.org/abs/2502.14088v1
- Date: Wed, 19 Feb 2025 20:27:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:27:36.558735
- Title: Regression in EO: Are VLMs Up to the Challenge?
- Title(参考訳): EOにおける回帰: VLMは課題に到達しているか?
- Authors: Xizhe Xue, Xiao Xiang Zhu,
- Abstract要約: 視覚言語モデル(VLM)は、認識と推論タスクにおいて顕著な成功を収めた。
本稿では,EO回帰タスクにVLMを適用する際の課題と機会を体系的に検討する。
- 参考スコア(独自算出の注目度): 18.343600857006763
- License:
- Abstract: Earth Observation (EO) data encompass a vast range of remotely sensed information, featuring multi-sensor and multi-temporal, playing an indispensable role in understanding our planet's dynamics. Recently, Vision Language Models (VLMs) have achieved remarkable success in perception and reasoning tasks, bringing new insights and opportunities to the EO field. However, the potential for EO applications, especially for scientific regression related applications remains largely unexplored. This paper bridges that gap by systematically examining the challenges and opportunities of adapting VLMs for EO regression tasks. The discussion first contrasts the distinctive properties of EO data with conventional computer vision datasets, then identifies four core obstacles in applying VLMs to EO regression: 1) the absence of dedicated benchmarks, 2) the discrete-versus-continuous representation mismatch, 3) cumulative error accumulation, and 4) the suboptimal nature of text-centric training objectives for numerical tasks. Next, a series of methodological insights and potential subtle pitfalls are explored. Lastly, we offer some promising future directions for designing robust, domain-aware solutions. Our findings highlight the promise of VLMs for scientific regression in EO, setting the stage for more precise and interpretable modeling of critical environmental processes.
- Abstract(参考訳): 地球観測データ(EO)は、マルチセンサーとマルチテンポラルを特徴とする広範囲なリモートセンシング情報を含み、地球のダイナミクスを理解するのに欠かせない役割を担っている。
近年、視覚言語モデル(VLM)は、認識と推論タスクにおいて顕著な成功を収め、EO分野に新たな洞察と機会をもたらしている。
しかし、特に科学的レグレッション関連の応用において、EOの応用の可能性はほとんど解明されていない。
本稿では,EO回帰タスクにVLMを適用する際の課題と機会を体系的に検討することによって,そのギャップを埋める。
この議論はまず、従来のコンピュータビジョンデータセットとEOデータの特徴を対比し、次に、VLMをEO回帰に適用する際の4つのコア障害を特定する。
1) 専用ベンチマークの欠如
2) 離散逆連続表現ミスマッチ
3)累積誤差蓄積、及び
4) 数値処理におけるテキスト中心学習目標の準最適性について検討した。
次に,一連の方法論的洞察と潜在的な微妙な落とし穴について検討する。
最後に、堅牢でドメイン対応のソリューションを設計するための将来的な方向性をいくつか提供します。
本研究は, 環境プロセスのより精密かつ解釈可能なモデリングの舞台となる, EOにおける科学的回帰のためのVLMの可能性を浮き彫りにするものである。
関連論文リスト
- BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games [44.16513620589459]
本稿では,大規模言語モデル(LLM)と視覚言語モデル(VLM)のエージェント能力を評価する新しいベンチマークであるBALROGを紹介する。
私たちのベンチマークでは、熟練していない人間が数秒で解決できるタスクや、習得に何年もかかるような極めて困難なタスクなど、さまざまな難易度を持つ既存の強化学習環境を取り入れています。
より簡単なゲームでは,現行のモデルが部分的には成功しているが,より困難なタスクに苦しむことが示唆された。
論文 参考訳(メタデータ) (2024-11-20T18:54:32Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [65.92331309449015]
本稿では,モデル能力の特定の側面に基づいてLVLMをベンチマークする,オンデマンドで評価を行う自動フレームワークであるAutoBench-Vを紹介する。
5つの要求されたユーザ入力に対して9つの人気のあるLVLMを広範囲に評価することにより、このフレームワークの有効性と信頼性を示す。
論文 参考訳(メタデータ) (2024-10-28T17:55:08Z) - VidEgoThink: Assessing Egocentric Video Understanding Capabilities for Embodied AI [17.763461523794806]
VidEgoThinkは、Embodied AIでエゴセントリックなビデオ理解能力を評価するためのベンチマークである。
我々は,ビデオ質問応答,階層計画,視覚的グラウンド,報酬モデリングの4つの重要な相互関連タスクを設計する。
APIベースのMLLM,オープンソースイメージベースのMLLM,オープンソースビデオベースのMLLMの3種類のモデルで広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-15T14:08:53Z) - Beyond the Hype: A dispassionate look at vision-language models in medical scenario [3.4299097748670255]
LVLM(Large Vision-Language Models)は、様々なタスクにまたがる顕著な能力を示す。
医学などの専門分野における性能や信頼性は依然として十分に評価されていない。
本稿では,既存のLVLMを包括的に評価する新しいベンチマークであるRadVUQAを紹介する。
論文 参考訳(メタデータ) (2024-08-16T12:32:44Z) - Belief Revision: The Adaptability of Large Language Models Reasoning [63.0281286287648]
本稿では,LMの信念修正能力をテストするための新しいデータセットであるBelief-Rを紹介する。
このタスクは、人間が事前の推論を抑える方法にインスパイアされ、新しく提案されたデルタ推論フレームワーク内のLMを評価する。
様々なプロンプト戦略にまたがる$sim$30 LMを評価した結果,LMは一般的に,新たな情報に反応して信念を適切に修正するのに苦慮していることがわかった。
論文 参考訳(メタデータ) (2024-06-28T09:09:36Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset [50.36095192314595]
大きな言語モデル(LLM)は、一般化可能な推論能力を持つ意識的なエージェントとして機能する。
この能力は、イベントにおける無限の可能な変更をモデル化する複雑さのために、まだ探索されていない。
我々は,各ステップに対応する3つのタスクからなる最初のベンチマークMARSを紹介する。
論文 参考訳(メタデータ) (2024-06-04T08:35:04Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
視覚条件付き言語モデル(VLM)は、視覚対話、シーン理解、ロボットタスク計画などのアプリケーションに採用されている。
新しいリリースの量は多いが、イメージ前処理、アーキテクチャ、最適化に関する重要な設計決定は未調査である。
論文 参考訳(メタデータ) (2024-02-12T18:21:14Z) - Evaluation and Enhancement of Semantic Grounding in Large
Vision-Language Models [25.413601452403213]
LVLM(Large Vision-Language Models)は、様々な視覚言語タスクに顕著な利点をもたらす。
制約付きセマンティックグラウンド機能は、現実のシナリオにおけるアプリケーションの障害となる。
LVLMのセマンティックグラウンド機能を改善することを目的とした,データ中心の強化手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T22:59:56Z) - Vision-Language Models for Vision Tasks: A Survey [62.543250338410836]
視覚言語モデル(VLM)は、Webスケールの画像テキストペアからリッチな視覚言語相関を学習する。
本稿では,視覚認知タスクにおける視覚言語モデルの体系的レビューを行う。
論文 参考訳(メタデータ) (2023-04-03T02:17:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。