Retrieving Versus Understanding Extractive Evidence in Few-Shot Learning
- URL: http://arxiv.org/abs/2502.14095v1
- Date: Wed, 19 Feb 2025 20:48:09 GMT
- Title: Retrieving Versus Understanding Extractive Evidence in Few-Shot Learning
- Authors: Karl Elbakian, Samuel Carton,
- Abstract summary: We analyze the relationship between the retrieval and interpretation of within-document evidence for large language model.
We perform two ablation studies to investigate when both label prediction and evidence retrieval errors can be attributed to qualities of the relevant evidence.
- Score: 4.230202411425062
- License:
- Abstract: A key aspect of alignment is the proper use of within-document evidence to construct document-level decisions. We analyze the relationship between the retrieval and interpretation of within-document evidence for large language model in a few-shot setting. Specifically, we measure the extent to which model prediction errors are associated with evidence retrieval errors with respect to gold-standard human-annotated extractive evidence for five datasets, using two popular closed proprietary models. We perform two ablation studies to investigate when both label prediction and evidence retrieval errors can be attributed to qualities of the relevant evidence. We find that there is a strong empirical relationship between model prediction and evidence retrieval error, but that evidence retrieval error is mostly not associated with evidence interpretation error--a hopeful sign for downstream applications built on this mechanism.
Related papers
- Heterogeneous Graph Reasoning for Fact Checking over Texts and Tables [22.18384189336634]
HeterFC is a word-level Heterogeneous-graph-based model for Fact Checking over unstructured and structured information.
We perform information propagation via a relational graph neural network, interactions between claims and evidence.
We introduce a multitask loss function to account for potential inaccuracies in evidence retrieval.
arXiv Detail & Related papers (2024-02-20T14:10:40Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence [59.81749318292707]
We propose a fact verification model named ReRead to retrieve evidence and verify claim.
The proposed system is able to achieve significant improvements upon best-reported models under different settings.
arXiv Detail & Related papers (2023-05-02T03:23:14Z) - Uncertain Evidence in Probabilistic Models and Stochastic Simulators [80.40110074847527]
We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as uncertain evidence'
We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables.
We devise concrete guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency.
arXiv Detail & Related papers (2022-10-21T20:32:59Z) - Distantly-Supervised Evidence Retrieval Enables Question Answering
without Evidence Annotation [19.551623461082617]
Open-domain question answering answers a question based on evidence retrieved from a large corpus.
This paper investigates whether models can learn to find evidence from a large corpus, with only distant supervision from answer labels for model training.
We introduce a novel approach (DistDR) that iteratively improves over a weak retriever by alternately finding evidence from the up-to-date model and encouraging the model to learn the most likely evidence.
arXiv Detail & Related papers (2021-10-10T20:01:27Z) - Graph-based Retrieval for Claim Verification over Cross-Document
Evidence [0.6853165736531939]
We conjecture that a graph-based approach can be beneficial to identify fragmented evidence.
We tested this hypothesis by building, over the whole corpus, a large graph that interconnects text portions by means of mentioned entities.
Our experiments show that leveraging on a graph structure is beneficial in identifying a reasonably small portion of passages related to a claim.
arXiv Detail & Related papers (2021-09-13T14:54:26Z) - Eider: Evidence-enhanced Document-level Relation Extraction [56.71004595444816]
Document-level relation extraction (DocRE) aims at extracting semantic relations among entity pairs in a document.
We propose a three-stage evidence-enhanced DocRE framework consisting of joint relation and evidence extraction, evidence-centered relation extraction (RE), and fusion of extraction results.
arXiv Detail & Related papers (2021-06-16T09:43:16Z) - Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact
Verification [19.130541561303293]
We propose a novel topic-aware evidence reasoning and stance-aware aggregation model for fact verification.
Tests conducted on two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification.
arXiv Detail & Related papers (2021-06-02T14:33:12Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
We present a simple model that can be trained on sequence structures.
Results on a large-scale dataset for Fact Extraction and VERification show that our model outperforms the graph-based approaches.
arXiv Detail & Related papers (2021-06-02T05:40:12Z) - AmbiFC: Fact-Checking Ambiguous Claims with Evidence [57.7091560922174]
We present AmbiFC, a fact-checking dataset with 10k claims derived from real-world information needs.
We analyze disagreements arising from ambiguity when comparing claims against evidence in AmbiFC.
We develop models for predicting veracity handling this ambiguity via soft labels.
arXiv Detail & Related papers (2021-04-01T17:40:08Z) - DeSePtion: Dual Sequence Prediction and Adversarial Examples for
Improved Fact-Checking [46.13738685855884]
We show that current systems for fact-checking are vulnerable to three categories of realistic challenges for fact-checking.
We present a system designed to be resilient to these "attacks" using multiple pointer networks for document selection.
We find that in handling these attacks we obtain state-of-the-art results on FEVER, largely due to improved evidence retrieval.
arXiv Detail & Related papers (2020-04-27T15:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.