論文の概要: Chasing the Timber Trail: Machine Learning to Reveal Harvest Location Misrepresentation
- arxiv url: http://arxiv.org/abs/2502.14115v1
- Date: Wed, 19 Feb 2025 21:34:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:38.816973
- Title: Chasing the Timber Trail: Machine Learning to Reveal Harvest Location Misrepresentation
- Title(参考訳): Timberの道のり: ハーベスト位置の誤表現を明らかにする機械学習
- Authors: Shailik Sarkar, Raquib Bin Yousuf, Linhan Wang, Brian Mayer, Thomas Mortier, Victor Deklerck, Jakub Truszkowski, John C. Simeone, Marigold Norman, Jade Saunders, Chang-Tien Lu, Naren Ramakrishnan,
- Abstract要約: 不法伐採は、世界の生物多様性、気候安定に重大な脅威をもたらし、合法的な木材の収穫と責任ある森林製品貿易の国際価格を抑えている。
ここでは,木材の収穫場所を決定するために,同位体値と大気変数を併用した機械学習パイプラインの結果について述べる。
当社のパイプラインは欧州の機関によって、違法なロシアとベラルーシの木材がEU市場に入るのを識別するために使われてきました。
- 参考スコア(独自算出の注目度): 15.199309045059632
- License:
- Abstract: Illegal logging poses a significant threat to global biodiversity, climate stability, and depresses international prices for legal wood harvesting and responsible forest products trade, affecting livelihoods and communities across the globe. Stable isotope ratio analysis (SIRA) is rapidly becoming an important tool for determining the harvest location of traded, organic, products. The spatial pattern in stable isotope ratio values depends on factors such as atmospheric and environmental conditions and can thus be used for geographical identification. We present here the results of a deployed machine learning pipeline where we leverage both isotope values and atmospheric variables to determine timber harvest location. Additionally, the pipeline incorporates uncertainty estimation to facilitate the interpretation of harvest location determination for analysts. We present our experiments on a collection of oak (Quercus spp.) tree samples from its global range. Our pipeline outperforms comparable state-of-the-art models determining geographic harvest origin of commercially traded wood products, and has been used by European enforcement agencies to identify illicit Russian and Belarusian timber entering the EU market. We also identify opportunities for further advancement of our framework and how it can be generalized to help identify the origin of falsely labeled organic products throughout the supply chain.
- Abstract(参考訳): 不法伐採は、世界の生物多様性、気候の安定に重大な脅威をもたらし、法的な木材の収穫と責任ある森林製品貿易の国際価格を抑え、世界中の住民や地域社会に影響を及ぼす。
安定同位体比分析 (SIRA) は, 貿易品, 有機品の収穫場所を決定する重要なツールとして急速になってきている。
安定同位体比値の空間パターンは、大気や環境条件などの要因に依存するため、地理的同定に使用できる。
ここでは,木材の収穫場所を決定するために,同位体値と大気変数を併用した機械学習パイプラインの結果について述べる。
さらに、パイプラインには不確実性推定が組み込まれ、アナリストの収穫位置決定の解釈を容易にする。
我々は,その大域から採集されたオーク(Quercus spp.)木の標本について実験を行った。
我々のパイプラインは、商業的に取引された木材製品の地理的収穫源を決定する最先端のモデルよりも優れており、欧州執行機関によって違法なロシア産とベラルーシ産の木材がEU市場に入るのを識別するために使われてきた。
また、我々の枠組みをさらに発展させる機会と、それがサプライチェーン全体を通して偽ラベル付けされた有機物の起源を特定するのにどのように役立つかを明らかにした。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting [58.12667617617306]
地理空間植生予測タスクのためのVegeDiffを提案する。
VegeDiffは、植物の変化過程の不確かさを確率的に捉えるために拡散モデルを使用した最初の企業である。
植生の変化の不確かさを捉え、関連する変数の複雑な影響をモデル化することで、VegeDiffは既存の決定論的手法より優れている。
論文 参考訳(メタデータ) (2024-07-17T14:15:52Z) - Fine-tuning of Geospatial Foundation Models for Aboveground Biomass Estimation [2.3429628556845405]
地上バイオマスを推定するための地理空間基盤モデルの微調整は、スクラッチから訓練されたU-Netに匹敵する性能を有する。
また、ブラジルの異なるエコリージョンのスパースラベルを用いた衛星画像の微調整により、モデルの伝達学習能力についても検討する。
論文 参考訳(メタデータ) (2024-06-28T12:54:10Z) - Automated forest inventory: analysis of high-density airborne LiDAR
point clouds with 3D deep learning [16.071397465972893]
ForAINetは多様な森林タイプや地理的地域をまたいでセグメンテーションを行うことができる。
システムは、調査ドローンを使用して5つの国で取得されたポイントクラウドのデータセットであるFor-Instanceでテストされている。
論文 参考訳(メタデータ) (2023-12-22T21:54:35Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Mapping historical forest biomass for stock-change assessments at parcel
to landscape scales [0.0]
地図製品は、人為的にも自然的にも、どこで、いつ、そしてどのように森林の炭素在庫が変化しているかを特定するのに役立ちます。
これらの製品は、ストックチェンジアセスメント、レポートの監視、検証フレームワークなど、幅広いアプリケーションへのインプットとして機能する。
論文 参考訳(メタデータ) (2023-04-05T17:55:00Z) - Deep Learning for Reference-Free Geolocation for Poplar Trees [0.17999333451993943]
ジオロケーションは、その遺伝的な構成に基づいて、与えられたサンプルの原産地を特定することに関係している。
本稿では,米国エネルギー省が高速回転型バイオ燃料作物として同定したPopulus trichocarpa(Poplar)のゲノム位置について検討する。
我々のモデルであるMashNetは、ランダムにサンプリングされた不整合配列断片からポプラ木の緯度と経度を予測する。
論文 参考訳(メタデータ) (2023-01-31T03:37:47Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Texture based Prototypical Network for Few-Shot Semantic Segmentation of
Forest Cover: Generalizing for Different Geographical Regions [0.0]
提案手法は,南アジアの熱帯林を同定し,中央ヨーロッパの温帯林を決定するために適応する。
1-way 1-shot) の森林群に対する0.62のIoUを提案手法を用いて取得し, 従来の少数ショットセマンティックセグメンテーション手法よりも有意に高い値(PANetは0.46)を示した。
論文 参考訳(メタデータ) (2022-03-29T15:48:17Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
我々は,reDT(rerectified decision tree)と呼ばれる知識蒸留に基づく決定木拡張を提案する。
我々は,ソフトラベルを用いたトレーニングを可能にする標準決定木の分割基準と終了条件を拡張した。
次に,教師モデルから抽出したソフトラベルに基づいて,新しいジャックニフェ法を用いてReDTを訓練する。
論文 参考訳(メタデータ) (2020-08-21T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。