論文の概要: Dual-Task Learning for Dead Tree Detection and Segmentation with Hybrid Self-Attention U-Nets in Aerial Imagery
- arxiv url: http://arxiv.org/abs/2503.21438v1
- Date: Thu, 27 Mar 2025 12:25:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:31.976353
- Title: Dual-Task Learning for Dead Tree Detection and Segmentation with Hybrid Self-Attention U-Nets in Aerial Imagery
- Title(参考訳): 空中画像におけるハイブリッド自己注意型U-Netを用いたデッドツリー検出とセグメンテーションのためのデュアルタスク学習
- Authors: Anis Ur Rahman, Einari Heinaro, Mete Ahishali, Samuli Junttila,
- Abstract要約: 本研究では,深層学習に基づく木分割を改良するハイブリッド後処理フレームワークを提案する。
ボレアル林の高解像度空中画像に基づいて、このフレームワークはインスタンスレベルのセグメンテーション精度を41.5%向上させた。
フレームワークの計算効率は、壁と壁の間の木死のマッピングのようなスケーラブルなアプリケーションをサポートする。
- 参考スコア(独自算出の注目度): 1.693687279684153
- License:
- Abstract: Mapping standing dead trees is critical for assessing forest health, monitoring biodiversity, and mitigating wildfire risks, for which aerial imagery has proven useful. However, dense canopy structures, spectral overlaps between living and dead vegetation, and over-segmentation errors limit the reliability of existing methods. This study introduces a hybrid postprocessing framework that refines deep learning-based tree segmentation by integrating watershed algorithms with adaptive filtering, enhancing boundary delineation, and reducing false positives in complex forest environments. Tested on high-resolution aerial imagery from boreal forests, the framework improved instance-level segmentation accuracy by 41.5% and reduced positional errors by 57%, demonstrating robust performance in densely vegetated regions. By balancing detection accuracy and over-segmentation artifacts, the method enabled the precise identification of individual dead trees, which is critical for ecological monitoring. The framework's computational efficiency supports scalable applications, such as wall-to-wall tree mortality mapping over large geographic regions using aerial or satellite imagery. These capabilities directly benefit wildfire risk assessment (identifying fuel accumulations), carbon stock estimation (tracking emissions from decaying biomass), and precision forestry (targeting salvage loggings). By bridging advanced remote sensing techniques with practical forest management needs, this work advances tools for large-scale ecological conservation and climate resilience planning.
- Abstract(参考訳): 死んだ木をマッピングすることは、森林の健全性を評価し、生物多様性を監視し、空中画像が有用であることが証明された山火事のリスクを軽減するために重要である。
しかし、密度の高い天蓋構造、生きた植生と死んだ植生のスペクトルの重なり合い、過剰な分断誤差は既存の方法の信頼性を制限している。
本研究では,複雑な森林環境において,流域アルゴリズムを適応フィルタリングと統合し,境界線を拡大し,偽陽性を低減し,深層学習に基づく木分割を改良するハイブリッド後処理フレームワークを提案する。
ボレアル林の高解像度空中画像に基づいて、このフレームワークはインスタンスレベルのセグメンテーション精度を41.5%改善し、位置誤差を57%削減し、密植された地域での堅牢な性能を実証した。
検出精度と過剰セグメンテーションアーティファクトのバランスをとることで、生態モニタリングに欠かせない個々の枯木を正確に識別することが可能になる。
フレームワークの計算効率は、空中画像や衛星画像を使用して、大規模な地理的領域にまたがる壁と壁の間の木死のマッピングなど、スケーラブルなアプリケーションをサポートする。
これらの能力は、山火事のリスクアセスメント(燃料蓄積の特定)、炭素ストック推定(崩壊するバイオマスからの排出を追跡する)、精密林業(サルベージの伐採を目標とする)に直接利益をもたらす。
本研究は,森林管理の実践的ニーズを生かした高度リモートセンシング技術により,大規模環境保全と気候回復計画のためのツールを整備する。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Enhancing Tree Type Detection in Forest Fire Risk Assessment: Multi-Stage Approach and Color Encoding with Forest Fire Risk Evaluation Framework for UAV Imagery [0.0]
森林火災は世界中の生態系、経済、人間の健康に重大な脅威をもたらす。
高度なコンピュータビジョンアルゴリズムを備えた無人航空機は森林火災の検出と評価に有望な解決策を提供する。
UAVと多段階物体検出アルゴリズムを用いた統合森林火災リスク評価フレームワークを最適化する。
論文 参考訳(メタデータ) (2024-07-27T05:52:31Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
超高解像度衛星画像を用いたAgave tequilana Weber azul crop segmentation and mature classificationを提案する。
実世界の深層学習問題を,作物の選別という非常に具体的な文脈で解決する。
結果として得られた正確なモデルにより、大規模地域で生産予測を行うことができる。
論文 参考訳(メタデータ) (2023-03-21T03:15:29Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - A hybrid convolutional neural network/active contour approach to
segmenting dead trees in aerial imagery [0.5276232626689566]
枯木は森林全体の健康の指標であり、森林生態系の3分の1の生物多様性を収容し、世界の炭素在庫の8%を構成している。
本稿では,既存の畳み込みニューラルネットワークと新しいアクティブな輪郭モデルを組み合わせたエネルギー最小化フレームワークを用いて,空中写真から死んだ木の正確な形状輪郭を構築する手法を提案する。
論文 参考訳(メタデータ) (2021-12-06T00:53:51Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Deep Learning based Automated Forest Health Diagnosis from Aerial Images [0.0]
航空画像に基づく森林分析は、死んだ木や生きた木を早期に検出することができる。
本研究では,再訓練したMask RCNNアプローチを用いて,空中画像からの枯木自動検出のための新しいフレームワークを提案する。
画像中の枯れ木をラベル付けするために、枯れ木マスクの数を自動生成し、計算することができます。
論文 参考訳(メタデータ) (2020-10-16T15:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。