論文の概要: Gradients can train reward models: An Empirical Risk Minimization Approach for Offline Inverse RL and Dynamic Discrete Choice Model
- arxiv url: http://arxiv.org/abs/2502.14131v1
- Date: Wed, 19 Feb 2025 22:22:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:36.636373
- Title: Gradients can train reward models: An Empirical Risk Minimization Approach for Offline Inverse RL and Dynamic Discrete Choice Model
- Title(参考訳): グラディエントは報酬モデルを訓練できる:オフライン逆RLと動的離散選択モデルに対する経験的リスク最小化アプローチ
- Authors: Enoch H. Kang, Hema Yoganarasimhan, Lalit Jain,
- Abstract要約: 機械学習において、動的選択(DDC)モデル(オフライン最大エントロピー正規化逆強化学習(オフラインMaxEnt-IRL))を推定する問題について検討する。
目的は、オフラインの振舞いデータからエージェントの振舞いを管理する$Q*$関数をリカバリすることである。
線形パラメータ化報酬の制限的仮定を使わずにこれらの問題を解くための大域収束勾配法を提案する。
- 参考スコア(独自算出の注目度): 9.531082746970286
- License:
- Abstract: We study the problem of estimating Dynamic Discrete Choice (DDC) models, also known as offline Maximum Entropy-Regularized Inverse Reinforcement Learning (offline MaxEnt-IRL) in machine learning. The objective is to recover reward or $Q^*$ functions that govern agent behavior from offline behavior data. In this paper, we propose a globally convergent gradient-based method for solving these problems without the restrictive assumption of linearly parameterized rewards. The novelty of our approach lies in introducing the Empirical Risk Minimization (ERM) based IRL/DDC framework, which circumvents the need for explicit state transition probability estimation in the Bellman equation. Furthermore, our method is compatible with non-parametric estimation techniques such as neural networks. Therefore, the proposed method has the potential to be scaled to high-dimensional, infinite state spaces. A key theoretical insight underlying our approach is that the Bellman residual satisfies the Polyak-Lojasiewicz (PL) condition -- a property that, while weaker than strong convexity, is sufficient to ensure fast global convergence guarantees. Through a series of synthetic experiments, we demonstrate that our approach consistently outperforms benchmark methods and state-of-the-art alternatives.
- Abstract(参考訳): 機械学習において、動的離散選択(DDC)モデル(オフライン最大エントロピー正規化逆強化学習(オフラインMaxEnt-IRL))を推定する問題について検討する。
目的は、オフラインの振舞いデータからエージェントの振舞いを管理する報酬または$Q^*$関数を回収することである。
本稿では,線形パラメータ化報酬の限定的な仮定を使わずに,これらの問題を解決するためのグローバル収束勾配法を提案する。
提案手法の新規性は,経験的リスク最小化(ERM)に基づくIRL/DDCフレームワークの導入にある。
さらに,本手法はニューラルネットワークなどの非パラメトリック推定手法と互換性がある。
したがって,提案手法は高次元無限状態空間にスケールできる可能性がある。
我々のアプローチの根底にある重要な理論的洞察は、ベルマン残差がポリャク・ロジャシエヴィチ(PL)条件を満たすことである。
一連の合成実験を通して、我々の手法はベンチマーク手法や最先端の代替品よりも一貫して優れていることを示した。
関連論文リスト
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Robust Imitation via Mirror Descent Inverse Reinforcement Learning [18.941048578572577]
本稿では,制約付き凸問題の反復解である報酬関数列を予測することを提案する。
提案したミラー降下更新規則は,ブレグマンの発散を最小化できることを示す。
我々のIRL法は, 既存手法よりも高い性能を示した。
論文 参考訳(メタデータ) (2022-10-20T12:25:21Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
オンライン方式で環境の遷移動態を学習する,オンライン型モデルに基づくセーフディープRLアルゴリズムを提案する。
我々は,本アルゴリズムがより標本効率が高く,制約付きモデルフリーアプローチと比較して累積的ハザード違反が低いことを示す。
論文 参考訳(メタデータ) (2022-10-14T06:53:02Z) - Safe Continuous Control with Constrained Model-Based Policy Optimization [0.0]
制約付き高次元制御のためのモデルベースセーフ探索アルゴリズムを提案する。
また、モデル生成データによるポリシー探索を高速化する実用的なアルゴリズムも導入する。
論文 参考訳(メタデータ) (2021-04-14T15:20:55Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIACは、批評家の非線形関数近似を可能にするアクター批判手法である。
特定の仮定の下では、学習者は$o(poly(d))$の探索ラウンドで最適に近い方針を見つける。
我々は,この適応を経験的に評価し,線形手法に触発された前処理よりも優れることを示す。
論文 参考訳(メタデータ) (2021-03-22T03:16:33Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - Policy Gradient Methods for the Noisy Linear Quadratic Regulator over a
Finite Horizon [3.867363075280544]
線形2次レギュレータ(LQR)問題における最適ポリシーを見つけるための強化学習法について検討する。
我々は、有限時間地平線と弱い仮定の下での状態ダイナミクスの設定に対する大域的線形収束を保証する。
基礎となるダイナミクスのモデルを仮定し、データに直接メソッドを適用する場合の結果を示す。
論文 参考訳(メタデータ) (2020-11-20T09:51:49Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
本稿では、ニューラルネットワークとスケーラブルな最適化アルゴリズムを用いた生存分析のためのフレキシブルモデルを提案する。
提案手法の有効性を,既存の最先端ディープラーニングサバイバル分析モデルと比較した。
論文 参考訳(メタデータ) (2020-08-19T19:11:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。