論文の概要: Token Adaptation via Side Graph Convolution for Efficient Fine-tuning of 3D Point Cloud Transformers
- arxiv url: http://arxiv.org/abs/2502.14142v2
- Date: Fri, 21 Feb 2025 22:56:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 13:51:10.499524
- Title: Token Adaptation via Side Graph Convolution for Efficient Fine-tuning of 3D Point Cloud Transformers
- Title(参考訳): 3Dポイントクラウド変換器の高速微調整のためのサイドグラフ畳み込みによるトークン適応
- Authors: Takahiko Furuya,
- Abstract要約: 本稿では,近接グラフ(STAG)上でのサイドトークン適応(Side Token Adaptation)と呼ばれる新しいPEFTアルゴリズムを提案する。
STAGは、下流タスクにトークンを適用するために、凍結バックボーントランスフォーマーと並行して動作するグラフ畳み込みサイドネットワークを使用している。
また、さまざまな公開3Dポイントクラウドデータセットからなる新しいベンチマークであるPoint Cloud Classification 13 (PCC13)も紹介する。
- 参考スコア(独自算出の注目度): 1.19658449368018
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) of pre-trained 3D point cloud Transformers has emerged as a promising technique for 3D point cloud analysis. While existing PEFT methods attempt to minimize the number of tunable parameters, they often suffer from high temporal and spatial computational costs during fine-tuning. This paper proposes a novel PEFT algorithm called Side Token Adaptation on a neighborhood Graph (STAG) to achieve superior temporal and spatial efficiency. STAG employs a graph convolutional side network operating in parallel with a frozen backbone Transformer to adapt tokens to downstream tasks. Through efficient graph convolution, parameter sharing, and reduced gradient computation, STAG significantly reduces both temporal and spatial costs for fine-tuning. We also present Point Cloud Classification 13 (PCC13), a new benchmark comprising diverse publicly available 3D point cloud datasets to facilitate comprehensive evaluation. Extensive experiments using multiple pre-trained models and PCC13 demonstrates the effectiveness of STAG. Specifically, STAG maintains classification accuracy comparable to existing methods while reducing tunable parameters to only 0.43M and achieving significant reductions in both computation time and memory consumption for fine-tuning. Code and benchmark will be available at: https://github.com/takahikof/STAG.
- Abstract(参考訳): 事前学習した3Dポイントクラウド変換器のパラメータ効率のよい微調整(PEFT)が,3Dポイントクラウド解析の有望な手法として登場した。
既存のPEFT法は調整可能なパラメータの数を最小化しようとするが、微調整時に時間的・空間的な計算コストが高い。
本稿では,近接グラフ(STAG)上でのサイドトークン適応(Side Token Adaptation)と呼ばれる新しいPEFTアルゴリズムを提案する。
STAGは、下流タスクにトークンを適用するために、凍結バックボーントランスフォーマーと並行して動作するグラフ畳み込みサイドネットワークを使用している。
グラフの効率的な畳み込み、パラメータ共有、勾配計算の削減により、STAGは微調整のための時間的および空間的コストを著しく削減する。
また、さまざまな公開可能な3Dポイントクラウドデータセットからなる新しいベンチマークであるポイントクラウド分類13(PCC13)も提示し、総合的な評価を容易にする。
複数の事前学習モデルとPCC13を用いた大規模な実験はSTAGの有効性を示す。
具体的には、STAGは既存の手法に匹敵する分類精度を維持しながら、調整可能なパラメータをわずか0.43Mに減らし、微調整のための計算時間とメモリ消費の両方において大幅な削減を実現している。
コードとベンチマークは、https://github.com/takahikof/STAG.comで提供される。
関連論文リスト
- Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning [49.91297276176978]
私たちは小説を提案します。
ポイントGST (Point GST) と呼ばれる点雲の効率的な微細調整法。
ポイントGSTは事前トレーニングされたモデルを凍結し、スペクトル領域のパラメータを微調整するためのトレーニング可能なポイントクラウドスペクトルアダプタ(PCSA)を導入する。
挑戦的なポイントクラウドデータセットに関する大規模な実験は、ポイントGSTが完全に微調整されたデータセットを上回るだけでなく、トレーニング可能なパラメータを大幅に削減することを示した。
論文 参考訳(メタデータ) (2024-10-10T17:00:04Z) - Sparse-Tuning: Adapting Vision Transformers with Efficient Fine-tuning and Inference [14.030836300221756]
textbfSparse-Tuningは、画像やビデオの情報冗長性を考慮に入れた新しいPEFTメソッドである。
Sparse-Tuningは各層で処理されるトークンの量を最小限に抑え、計算とメモリのオーバーヘッドを2次的に削減する。
我々のSparse-TuningはGFLOPsを62%-70%に削減し,最先端性能を実現した。
論文 参考訳(メタデータ) (2024-05-23T15:34:53Z) - Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis [51.14136878142034]
ポイントクラウド分析は、事前訓練されたモデルのポイントクラウドの転送によって、優れたパフォーマンスを実現している。
モデル適応のための既存の方法は通常、高い計算コストに依存するため、非効率な全てのモデルパラメータを更新する。
本稿では,タスク性能とパラメータ効率のトレードオフを考慮した,ポイントクラウド解析のためのパラメータ効率変換学習を提案する。
論文 参考訳(メタデータ) (2024-03-03T08:25:04Z) - Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) は、適応トークン選択機構によって強化された標準PTモデルである。
AdaPTは推論中のトークン数を動的に削減し、大きな点雲の効率的な処理を可能にする。
論文 参考訳(メタデータ) (2024-01-26T13:24:45Z) - Point-PEFT: Parameter-Efficient Fine-Tuning for 3D Pre-trained Models [46.42092771753465]
我々は、最小限の学習可能なパラメータを持つポイントクラウド事前学習モデルに適用するための新しいフレームワークであるPoint-PEFTを紹介する。
具体的には、事前訓練された3Dモデルに対して、パラメータの大部分を凍結し、新たに追加されたPEFTモジュールを下流タスクでチューニングする。
論文 参考訳(メタデータ) (2023-10-04T16:49:36Z) - AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware
Transformers [94.11915008006483]
本稿では,ポイントクラウドの完了をセット・ツー・セットの翻訳問題として再定義する手法を提案する。
我々は、ポイントクラウド補完のためにTransformerエンコーダデコーダアーキテクチャを採用したPoinTrと呼ばれる新しいモデルを設計する。
本手法は,PCNで6.53 CD,ShapeNet-55で0.81 CD,現実世界のKITTIで0.392 MMDを実現する。
論文 参考訳(メタデータ) (2023-01-11T16:14:12Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - Point-Voxel Transformer: An Efficient Approach To 3D Deep Learning [5.236787242129767]
本稿では,ポイント・ボクセル変換器 (PVT) と呼ばれる新しい3次元変換器を提案する。
提案手法はトランスフォーマーアーキテクチャの可能性を完全に活用し,効率よく正確な認識を行う。
論文 参考訳(メタデータ) (2021-08-13T06:07:57Z) - DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic
Voxelization [0.0]
本稿では,効率的な3Dポイント・クラウド・オブジェクト検出のための新しい2段階フレームワークを提案する。
生のクラウドデータを3D空間で直接解析するが、目覚ましい効率と精度を実現する。
我々は,75 FPSでKITTI 3Dオブジェクト検出データセットを,25 FPSの推論速度で良好な精度でOpenデータセット上で強調する。
論文 参考訳(メタデータ) (2021-07-27T10:07:39Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
点雲は非秩序であり、その密度は著しく一様ではないため、点雲の3次元運動の推定は困難である。
本稿では,sparse convolution-transformer network (sctn) という新しいアーキテクチャを提案する。
学習した関係に基づく文脈情報が豊富で,対応点の一致に役立ち,シーンフローの推定に有効であることを示す。
論文 参考訳(メタデータ) (2021-05-10T15:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。