論文の概要: Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks
- arxiv url: http://arxiv.org/abs/2502.14158v1
- Date: Wed, 19 Feb 2025 23:59:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:26:51.115733
- Title: Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks
- Title(参考訳): 少ないタスクによるグラフFew-shot学習のための2段階混合
- Authors: Yonghao Liu, Mengyu Li, Fausto Giunchiglia, Lan Huang, Ximing Li, Xiaoyue Feng, Renchu Guan,
- Abstract要約: We propose a SiMple yet effectIve approach for graph few-shot Learning with fEwer task, named SMILE。
メタ学習において利用可能なノードとタスクを同時に強化するために、マルチレベルのミックスアップ戦略を導入し、タスク内とタスク間ミックスアップの両方を包含する。
経験的に言えば、SMILEは、ドメイン内設定とクロスドメイン設定で評価されたすべてのデータセットに対して、他の競合モデルよりも大きなマージンで、一貫して優れています。
- 参考スコア(独自算出の注目度): 23.07584018576066
- License:
- Abstract: Graph neural networks have been demonstrated as a powerful paradigm for effectively learning graph-structured data on the web and mining content from it.Current leading graph models require a large number of labeled samples for training, which unavoidably leads to overfitting in few-shot scenarios. Recent research has sought to alleviate this issue by simultaneously leveraging graph learning and meta-learning paradigms. However, these graph meta-learning models assume the availability of numerous meta-training tasks to learn transferable meta-knowledge. Such assumption may not be feasible in the real world due to the difficulty of constructing tasks and the substantial costs involved. Therefore, we propose a SiMple yet effectIve approach for graph few-shot Learning with fEwer tasks, named SMILE. We introduce a dual-level mixup strategy, encompassing both within-task and across-task mixup, to simultaneously enrich the available nodes and tasks in meta-learning. Moreover, we explicitly leverage the prior information provided by the node degrees in the graph to encode expressive node representations. Theoretically, we demonstrate that SMILE can enhance the model generalization ability. Empirically, SMILE consistently outperforms other competitive models by a large margin across all evaluated datasets with in-domain and cross-domain settings. Our anonymous code can be found here.
- Abstract(参考訳): グラフニューラルネットワークは、Web上でグラフ構造化データを効果的に学習し、そこからコンテンツをマイニングする強力なパラダイムとして実証されている。
近年の研究では、グラフ学習とメタ学習パラダイムを同時に活用することで、この問題を緩和しようと試みている。
しかし、これらのグラフメタ学習モデルは、伝達可能なメタ知識を学習するために、多数のメタトレーニングタスクが利用可能であると仮定する。
このような仮定は、タスク構築の難しさとそれに伴う実質的なコストのため、現実世界では実現できないかもしれない。
そこで我々は, SMILE と呼ばれるfEwer タスクを用いたグラフ数ショット学習のためのSiMple yet effectIve approachを提案する。
我々は、メタ学習において利用可能なノードとタスクを同時に強化するために、マルチレベルのミックスアップ戦略を導入し、タスク内とタスク間ミックスアップの両方を包含する。
さらに,グラフ内のノード次数によって提供される先行情報を明示的に活用して,表現表現を符号化する。
理論的には、SMILEはモデル一般化能力を高めることができる。
経験的に言えば、SMILEは、ドメイン内設定とクロスドメイン設定で評価されたすべてのデータセットに対して、他の競合モデルよりも大きなマージンで、一貫して優れています。
匿名のコードはここにある。
関連論文リスト
- UniGraph2: Learning a Unified Embedding Space to Bind Multimodal Graphs [34.48393396390799]
マルチモーダルグラフ上での汎用的な表現学習を可能にする新しいクロスドメイングラフ基盤モデルを提案する。
UniGraph2は、グラフニューラルネットワーク(GNN)と共にモダリティ固有のエンコーダを使用して、統一された低次元埋め込み空間を学習する。
我々は,UniGraph2が表現学習,伝達学習,マルチモーダル生成タスクなどのタスクにおいて,最先端モデルよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2025-02-02T14:04:53Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
グラフにおけるクロスタスクの一般性を学習するための新しいアプローチを提案する。
グラフ上のタスク空間を整列させるための基本的な学習インスタンスとしてタスクツリーを提案する。
その結果,グラフニューラルネットワークが多種多様なタスクツリーで事前訓練された場合,伝達可能な知識を取得することが示唆された。
論文 参考訳(メタデータ) (2024-12-21T02:07:43Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)の統合は、有望な技術パラダイムとして現れている。
データ品質を根本的に向上させるために、リッチなセマンティックコンテキストを持つグラフ記述テキストを活用します。
この研究は、グラフ学習方法論の進歩を目指す研究者や実践者にとって、基礎的な参考となる。
論文 参考訳(メタデータ) (2024-12-17T01:41:17Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Graph Representation Learning for Multi-Task Settings: a Meta-Learning
Approach [5.629161809575013]
メタ学習に基づくグラフ表現学習のための新しい学習戦略を提案する。
本手法は,複数タスクの同時実行学習において発生する問題を回避する。
我々は,本手法で訓練したモデルが生成した埋め込みを,単一タスクとマルチタスクの両エンドツーエンドモデルに匹敵する,あるいは驚くほど高いパフォーマンスで複数のタスクを実行できることを示す。
論文 参考訳(メタデータ) (2022-01-10T12:58:46Z) - Graph Few-shot Class-incremental Learning [25.94168397283495]
新しいクラスを段階的に学習する能力は、すべての現実世界の人工知能システムにとって不可欠である。
本稿では,グラフFCL(Graph Few-shot Class-incremental)問題について検討する。
基本クラスから繰り返しタスクをサンプリングすることでグラフ擬似インクリメンタルラーニングパラダイムを提案する。
本稿では,タスクレベルの注意とノードクラスのプロトタイプから計算したタスク依存型正規化器について述べる。
論文 参考訳(メタデータ) (2021-12-23T19:46:07Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
新しいグラフメタ学習フレームワーク - Graph Hallucination Networks (Meta-GHN) を提案する。
新たなロバストネス強化エピソードトレーニングに基づいて、Meta-GHNは、弱いラベル付きデータからクリーンノード表現を幻覚させるメタ学習を行う。
大規模な実験は、既存のグラフメタ学習研究よりもMeta-GHNの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-06-12T22:22:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。