Blockchain-based Framework for Scalable and Incentivized Federated Learning
- URL: http://arxiv.org/abs/2502.14170v1
- Date: Thu, 20 Feb 2025 00:38:35 GMT
- Title: Blockchain-based Framework for Scalable and Incentivized Federated Learning
- Authors: Bijun Wu, Oshani Seneviratne,
- Abstract summary: Federated Learning (FL) enables collaborative model training without sharing raw data, preserving privacy while harnessing distributed datasets.
Traditional FL systems often rely on centralized aggregating mechanisms, introducing trust issues, single points of failure, and limited mechanisms for incentivizing meaningful client contributions.
This paper presents a blockchain-based FL framework that addresses these limitations by integrating smart contracts and a novel hybrid incentive mechanism.
- Score: 0.820828081284034
- License:
- Abstract: Federated Learning (FL) enables collaborative model training without sharing raw data, preserving privacy while harnessing distributed datasets. However, traditional FL systems often rely on centralized aggregating mechanisms, introducing trust issues, single points of failure, and limited mechanisms for incentivizing meaningful client contributions. These challenges are exacerbated as FL scales to train resource-intensive models, such as large language models (LLMs), requiring scalable, decentralized solutions. This paper presents a blockchain-based FL framework that addresses these limitations by integrating smart contracts and a novel hybrid incentive mechanism. The framework automates critical FL tasks, including client registration, update validation, reward distribution, and maintaining a transparent global state. The hybrid incentive mechanism combines on-chain alignment-based rewards, off-chain fairness checks, and consistency multipliers to ensure fairness, transparency, and sustained engagement. We evaluate the framework through gas cost analysis, demonstrating its feasibility for different scales of federated learning scenarios.
Related papers
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation [12.446757264387564]
We present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for Federated Learning (FL)
We offload the FL aggregation into TEE to provide an isolated, trusted and customizable off-chain execution.
We provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy.
arXiv Detail & Related papers (2024-08-13T13:33:35Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
The paper focuses on enhancing the trustworthiness of participating nodes through a trust penalization mechanism.
The proposed system aims to create a fair, secure and transparent environment for collaborative machine learning without compromising data privacy.
arXiv Detail & Related papers (2023-10-30T06:05:50Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
We study the practical implications of outsourcing the orchestration of federated learning to a democratic setting such as in a blockchain.
Using simulation, we evaluate the blockchained FL operation by applying two different ML models on the well-known MNIST and CIFAR-10 datasets.
Our results show the high impact of model inconsistencies on the accuracy of the models (up to a 35% decrease in prediction accuracy)
arXiv Detail & Related papers (2023-10-11T13:18:23Z) - Fairness, Integrity, and Privacy in a Scalable Blockchain-based
Federated Learning System [0.0]
Federated machine learning (FL) allows to collectively train models on sensitive data as only the clients' models and not their training data need to be shared.
Despite the attention that research on FL has drawn, the concept still lacks broad adoption in practice.
This paper suggests a FL system that incorporates blockchain technology, local differential privacy, and zero-knowledge proofs.
arXiv Detail & Related papers (2021-11-11T16:08:44Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients.
To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients.
It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients.
arXiv Detail & Related papers (2021-08-12T07:30:42Z) - Reward-Based 1-bit Compressed Federated Distillation on Blockchain [14.365210947456209]
Recent advent of various forms of Federated Knowledge Distillation (FD) paves the way for a new generation of robust and communication-efficient Federated Learning (FL)
We introduce a novel decentralized federated learning framework where heavily compressed 1-bit soft-labels are aggregated on a smart contract.
In a context where workers' contributions are now easily comparable, we modify the Peer Truth Serum for Crowdsourcing mechanism (PTSC) for FD to reward honest participation.
arXiv Detail & Related papers (2021-06-27T15:51:04Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.