QUAD-LLM-MLTC: Large Language Models Ensemble Learning for Healthcare Text Multi-Label Classification
- URL: http://arxiv.org/abs/2502.14189v1
- Date: Thu, 20 Feb 2025 01:46:12 GMT
- Title: QUAD-LLM-MLTC: Large Language Models Ensemble Learning for Healthcare Text Multi-Label Classification
- Authors: Hajar Sakai, Sarah S. Lam,
- Abstract summary: The escalating volume of collected healthcare textual data presents a unique challenge for automated Text Classification.
Traditional machine learning models often fail to fully capture the array of expressed topics.
Large Language Models (LLMs) have demonstrated remarkable effectiveness across numerous Natural Language Processing (NLP) tasks.
- Score: 4.8342038441006805
- License:
- Abstract: The escalating volume of collected healthcare textual data presents a unique challenge for automated Multi-Label Text Classification (MLTC), which is primarily due to the scarcity of annotated texts for training and their nuanced nature. Traditional machine learning models often fail to fully capture the array of expressed topics. However, Large Language Models (LLMs) have demonstrated remarkable effectiveness across numerous Natural Language Processing (NLP) tasks in various domains, which show impressive computational efficiency and suitability for unsupervised learning through prompt engineering. Consequently, these LLMs promise an effective MLTC of medical narratives. However, when dealing with various labels, different prompts can be relevant depending on the topic. To address these challenges, the proposed approach, QUAD-LLM-MLTC, leverages the strengths of four LLMs: GPT-4o, BERT, PEGASUS, and BART. QUAD-LLM-MLTC operates in a sequential pipeline in which BERT extracts key tokens, PEGASUS augments textual data, GPT-4o classifies, and BART provides topics' assignment probabilities, which results in four classifications, all in a 0-shot setting. The outputs are then combined using ensemble learning and processed through a meta-classifier to produce the final MLTC result. The approach is evaluated using three samples of annotated texts, which contrast it with traditional and single-model methods. The results show significant improvements across the majority of the topics in the classification's F1 score and consistency (F1 and Micro-F1 scores of 78.17% and 80.16% with standard deviations of 0.025 and 0.011, respectively). This research advances MLTC using LLMs and provides an efficient and scalable solution to rapidly categorize healthcare-related text data without further training.
Related papers
- Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
Large language models (LLMs) excel at a range of tasks through in-context learning (ICL)
We introduce In-Context Contrastive Decoding (ICCD), a novel method that emphasizes input-label mapping.
ICCD emphasizes input-label mapping by contrasting the output distributions between positive and negative in-context examples.
arXiv Detail & Related papers (2025-02-19T14:04:46Z) - A Novel Two-Step Fine-Tuning Pipeline for Cold-Start Active Learning in Text Classification Tasks [7.72751543977484]
This work investigates the effectiveness of BERT-based contextual embeddings in active learning (AL) tasks on cold-start scenarios.
Our primary contribution is the proposal of a more robust fine-tuning pipeline - DoTCAL.
Our evaluation contrasts BERT-based embeddings with other prevalent text representation paradigms, including Bag of Words (BoW), Latent Semantic Indexing (LSI) and FastText.
arXiv Detail & Related papers (2024-07-24T13:50:21Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
We consider harnessing the amazing power of language models (LLMs) to solve our task.
We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets.
arXiv Detail & Related papers (2024-01-24T04:28:50Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - Large Language Models Are Zero-Shot Text Classifiers [3.617781755808837]
Large language models (LLMs) have become extensively used across various sub-disciplines of natural language processing (NLP)
In NLP, text classification problems have garnered considerable focus, but still faced with some limitations related to expensive computational cost, time consumption, and robust performance to unseen classes.
With the proposal of chain of thought prompting (CoT), LLMs can be implemented using zero-shot learning (ZSL) with the step by step reasoning prompts.
arXiv Detail & Related papers (2023-12-02T06:33:23Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - A systematic evaluation of large language models for biomedical natural language processing: benchmarks, baselines, and recommendations [22.668383945059762]
We present a systematic evaluation of four representative Large Language Models (LLMs) across 12 BioNLP datasets.
The evaluation is conducted under four settings: zero-shot, static few-shot, dynamic K-nearest few-shot, and fine-tuning.
We compare these models against state-of-the-art (SOTA) approaches that fine-tune (domain-specific) BERT or BART models.
arXiv Detail & Related papers (2023-05-10T13:40:06Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
Large language models (LLMs) can produce coherent, cohesive, relevant, and fluent answers for various natural language processing (NLP) tasks.
This paper provides an in-depth evaluation of LLMs' ability on discourse modeling.
arXiv Detail & Related papers (2023-04-05T03:49:06Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - A Comparison of SVM against Pre-trained Language Models (PLMs) for Text
Classification Tasks [1.2934180951771599]
For domain-specific corpora, fine-tuning a pre-trained model for a specific task has shown to provide a performance improvement.
We compare the performance of four different PLMs on three public domain-free datasets and a real-world dataset containing domain-specific words.
arXiv Detail & Related papers (2022-11-04T16:28:40Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
Natural Language Inference (NLI) is a growingly essential task in natural language understanding.
Here we propose a multi-level supervised contrastive learning framework named MultiSCL for low-resource natural language inference.
arXiv Detail & Related papers (2022-05-31T05:54:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.