Do LLMs Consider Security? An Empirical Study on Responses to Programming Questions
- URL: http://arxiv.org/abs/2502.14202v1
- Date: Thu, 20 Feb 2025 02:20:06 GMT
- Title: Do LLMs Consider Security? An Empirical Study on Responses to Programming Questions
- Authors: Amirali Sajadi, Binh Le, Anh Nguyen, Kostadin Damevski, Preetha Chatterjee,
- Abstract summary: ChatGPT can volunteer context-specific information to developers, promoting safe coding practices.
We evaluate the degree of security awareness exhibited by three prominent LLMs: Claude 3, GPT-4, and Llama 3.
Our findings show that all three models struggle to accurately detect and warn users about vulnerabilities, achieving a detection rate of only 12.6% to 40% across our datasets.
- Score: 10.69738882390809
- License:
- Abstract: The widespread adoption of conversational LLMs for software development has raised new security concerns regarding the safety of LLM-generated content. Our motivational study outlines ChatGPT's potential in volunteering context-specific information to the developers, promoting safe coding practices. Motivated by this finding, we conduct a study to evaluate the degree of security awareness exhibited by three prominent LLMs: Claude 3, GPT-4, and Llama 3. We prompt these LLMs with Stack Overflow questions that contain vulnerable code to evaluate whether they merely provide answers to the questions or if they also warn users about the insecure code, thereby demonstrating a degree of security awareness. Further, we assess whether LLM responses provide information about the causes, exploits, and the potential fixes of the vulnerability, to help raise users' awareness. Our findings show that all three models struggle to accurately detect and warn users about vulnerabilities, achieving a detection rate of only 12.6% to 40% across our datasets. We also observe that the LLMs tend to identify certain types of vulnerabilities related to sensitive information exposure and improper input neutralization much more frequently than other types, such as those involving external control of file names or paths. Furthermore, when LLMs do issue security warnings, they often provide more information on the causes, exploits, and fixes of vulnerabilities compared to Stack Overflow responses. Finally, we provide an in-depth discussion on the implications of our findings and present a CLI-based prompting tool that can be used to generate significantly more secure LLM responses.
Related papers
- Large Language Models and Code Security: A Systematic Literature Review [0.0]
Large Language Models (LLMs) have emerged as powerful tools for automating various programming tasks.
LLMs could introduce vulnerabilities unbeknown to the programmer.
When analyzing code, they could miss clear vulnerabilities or signal nonexistent ones.
arXiv Detail & Related papers (2024-12-19T16:20:22Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
Large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks.
This vulnerability poses significant risks to the real-world applications.
We propose a novel defensive paradigm called GuidelineLLM.
arXiv Detail & Related papers (2024-12-10T12:42:33Z) - Assessment of LLM Responses to End-user Security Questions [5.569481220877618]
Large language models (LLMs) like GPT, LLAMA, and Gemini have shown promise in answering a variety of questions outside of security.
We studied LLM performance in the area of end user security by qualitatively evaluating 3 popular LLMs on 900 systematically collected end user security questions.
arXiv Detail & Related papers (2024-11-21T20:36:36Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Towards Explainable Vulnerability Detection with Large Language Models [17.96542494363619]
Software vulnerabilities pose significant risks to the security and integrity of software systems.
The advent of large language models (LLMs) has introduced transformative potential due to their advanced generative capabilities.
In this paper, we propose LLMVulExp, an automated framework designed to specialize LLMs for the dual tasks of vulnerability detection and explanation.
arXiv Detail & Related papers (2024-06-14T04:01:25Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)
We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.
Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - LLM4Vuln: A Unified Evaluation Framework for Decoupling and Enhancing LLMs' Vulnerability Reasoning [20.463200377413255]
We introduce a unified evaluation framework that separates and assesses vulnerability reasoning capabilities.
We conduct experiments using 147 ground-truth vulnerabilities and 147 non-vulnerable cases in Solidity, Java and C/C++, testing them in a total of 3,528 scenarios.
Our findings reveal the varying impacts of knowledge enhancement, context supplementation, and prompt schemes.
arXiv Detail & Related papers (2024-01-29T14:32:27Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
This paper collects the first open-source dataset to evaluate safeguards in large language models.
We train several BERT-like classifiers to achieve results comparable with GPT-4 on automatic safety evaluation.
arXiv Detail & Related papers (2023-08-25T14:02:12Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.