Quantum stick-slip motion in nanoscaled friction
- URL: http://arxiv.org/abs/2502.14207v1
- Date: Thu, 20 Feb 2025 02:36:51 GMT
- Title: Quantum stick-slip motion in nanoscaled friction
- Authors: Dai-Nam Le, Pablo Rodriguez-Lopez, Lilia M. Woods,
- Abstract summary: Friction in atomistic systems is usually described by the classical Prandtl-Tomlinson model.
We consider the quantum mechanical version in which the dissipation is facilitated by releasing heat to an external bath reservoir.
- Score: 0.0
- License:
- Abstract: Friction in atomistic systems is usually described by the classical Prandtl-Tomlinson model suitable for capturing the dragging force of a nanoparticle in a periodic potential. Here we consider the quantum mechanical version of this model in which the dissipation is facilitated by releasing heat to an external bath reservoir. The time evolution of the system is captured with the Liouville-von Neumann equation through the density matrix of the system in the Markov approximation. We examine several kinetic and dissipative properties of the nanoparticle by delineating classical vs quantum mechanical effects. We find that that the Landau-Zener tunneling is a key factor in the overall reduction of the frictional dissipation when compared to the classical motion in which such tunneling is absent. This in-depth study analyzes the interplay between velocity, strength of interaction, and temperature to control the frictional process and provide useful guidelines for experimental data interpretation.
Related papers
- Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Superfluidic nature of self-driven nanofluidics at liquid-gas interfaces [0.0]
Self-driven nanofluidic flow at the liquid-air interface is a non-intuitive phenomenon.
We study the nonlinear dynamics of a confined nanopore system at the liquid-air interface.
arXiv Detail & Related papers (2022-08-29T17:49:03Z) - Quantum kinetic theory of flux-carrying Brownian particles [0.0]
We develop the kinetic theory of the flux-carrying Brownian motion recently introduced in the context of open quantum systems.
This model constitutes an effective description of two-dimensional dissipative particles violating both time-reversal and parity.
arXiv Detail & Related papers (2021-10-29T09:54:53Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Quantum Brownian Motion for Magnets [0.0]
We derive a general spin operator equation of motion that describes three-dimensional precession and damping.
The results provide a powerful framework to explore general three-dimensional dissipation in quantum thermodynamics.
arXiv Detail & Related papers (2020-09-01T17:44:50Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Dissipative dynamics of an interacting spin system with collective
damping [1.3980986259786221]
Hamiltonian and Lindblad dynamics in quantum systems give rise to non-equillibrium phenomena.
In this paper, we investigate this interplay of dynamics in infinite range Heisenberg model coupled to a non-Markovian bath.
arXiv Detail & Related papers (2018-03-03T14:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.