論文の概要: MCQA-Eval: Efficient Confidence Evaluation in NLG with Gold-Standard Correctness Labels
- arxiv url: http://arxiv.org/abs/2502.14268v1
- Date: Thu, 20 Feb 2025 05:09:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:49.293200
- Title: MCQA-Eval: Efficient Confidence Evaluation in NLG with Gold-Standard Correctness Labels
- Title(参考訳): MCQA-Eval:ゴールドスタンダード補正ラベルを用いたNLGの信頼性評価
- Authors: Xiaoou Liu, Zhen Lin, Longchao Da, Chacha Chen, Shubhendu Trivedi, Hua Wei,
- Abstract要約: 大規模言語モデル (LLM) には堅牢な信頼度推定が必要である。
McQCA-Evalは、自然言語生成における信頼度を評価するための評価フレームワークである。
- 参考スコア(独自算出の注目度): 16.300463494913593
- License:
- Abstract: Large Language Models (LLMs) require robust confidence estimation, particularly in critical domains like healthcare and law where unreliable outputs can lead to significant consequences. Despite much recent work in confidence estimation, current evaluation frameworks rely on correctness functions -- various heuristics that are often noisy, expensive, and possibly introduce systematic biases. These methodological weaknesses tend to distort evaluation metrics and thus the comparative ranking of confidence measures. We introduce MCQA-Eval, an evaluation framework for assessing confidence measures in Natural Language Generation (NLG) that eliminates dependence on an explicit correctness function by leveraging gold-standard correctness labels from multiple-choice datasets. MCQA-Eval enables systematic comparison of both internal state-based white-box (e.g. logit-based) and consistency-based black-box confidence measures, providing a unified evaluation methodology across different approaches. Through extensive experiments on multiple LLMs and widely used QA datasets, we report that MCQA-Eval provides efficient and more reliable assessments of confidence estimation methods than existing approaches.
- Abstract(参考訳): 大規模言語モデル(LLM)は、特に信頼できないアウトプットが重大な結果をもたらす医療や法のような重要な領域において、堅牢な信頼推定を必要とする。
信頼度推定に関する最近の研究にもかかわらず、現在の評価フレームワークは正当性関数に依存している。
これらの方法論的弱点は評価指標を歪ませる傾向があり、したがって信頼度の比較ランキングは低下する。
我々は,NLG(Natural Language Generation)における信頼度を評価するための評価フレームワークMCQA-Evalを紹介した。
MCQA-Evalは、内部状態ベースのホワイトボックス(例えばロジットベース)と一貫性ベースのブラックボックス信頼度の両方を体系的に比較することができ、異なるアプローチで統一的な評価手法を提供する。
複数のLLMおよび広く使用されているQAデータセットに関する広範な実験を通じて、MCQA-Evalは既存の手法よりも効率的で信頼性の高い信頼度推定手法を提供することを報告した。
関連論文リスト
- On Verbalized Confidence Scores for LLMs [25.160810008907397]
大規模言語モデル(LLM)の不確実性定量化は、その応答に対するより人間的な信頼を確立することができる。
この研究は、出力トークンの一部として信頼度スコアで不確実性を言語化するようLLM自身に求めることに重点を置いている。
我々は、異なるデータセット、モデル、およびプロンプトメソッドに関して、言語化された信頼度スコアの信頼性を評価する。
論文 参考訳(メタデータ) (2024-12-19T11:10:36Z) - Label-Confidence-Aware Uncertainty Estimation in Natural Language Generation [8.635811152610604]
不確実性定量化(UQ)は、AIシステムの安全性と堅牢性を保証するために不可欠である。
サンプルとラベルソース間の分岐に基づくラベル信頼度(LCA)の不確実性評価を提案する。
論文 参考訳(メタデータ) (2024-12-10T07:35:23Z) - Black-box Uncertainty Quantification Method for LLM-as-a-Judge [13.45579129351493]
LLM-as-a-Judge評価の信頼性を高めるために設計された不確実性を定量化する新しい手法を提案する。
生成された評価と可能な評価の関係を分析して不確実性を定量化する。
これらの関係を相互に評価し、トークン確率に基づく混乱行列を構築することにより、高いあるいは低い不確実性のラベルを導出する。
論文 参考訳(メタデータ) (2024-10-15T13:29:22Z) - Confidence Estimation for LLM-Based Dialogue State Tracking [9.305763502526833]
大規模言語モデル(LLM)に基づく会話型AIシステムでは,モデルの出力に対する信頼度の推定が重要である。
オープン・アンド・クローズド・ウェイト LLM に提案するアプローチを含む,手法の徹底的な探索を行う。
以上の結果から, 微調整式オープンウェイトLLMはAUC性能が向上し, 信頼性スコアの校正精度が向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-15T06:44:26Z) - How Reliable are LLMs as Knowledge Bases? Re-thinking Facutality and Consistency [60.25969380388974]
大規模言語モデル (LLM) は知識ベース (KB) として研究されている。
現在の評価手法は、信頼性の高い性能の他の決定的な基準を見越して、知識の保持に過度に焦点を絞っている。
我々は,事実と一貫性を定量化するための新しい基準と指標を提案し,最終的な信頼性スコアを導いた。
論文 参考訳(メタデータ) (2024-07-18T15:20:18Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models [36.273451767886726]
FreeEvalは、大規模言語モデルの信頼性と効率的な自動評価を可能にするために設計された、モジュール化されたスケーラブルなフレームワークである。
FreeEvalの統一された抽象化は、統合を単純化し、多様な評価方法論の透明性を改善します。
このフレームワークは、人間の評価やデータ汚染検出などのメタ評価技術を統合し、動的評価モジュールとともに、評価結果の公平性を高める。
論文 参考訳(メタデータ) (2024-04-09T04:17:51Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
エンドツーエンド自動音声認識(ASR)における信頼度推定の検討
4つのよく知られた音声データセットにおける信頼度手法の広範なベンチマークを提供する。
以上の結果から,ロジットを学習温度でスケーリングすることで,強いベースラインが得られることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T09:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。