論文の概要: Predicting Fetal Birthweight from High Dimensional Data using Advanced Machine Learning
- arxiv url: http://arxiv.org/abs/2502.14270v1
- Date: Thu, 20 Feb 2025 05:17:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 17:44:22.057587
- Title: Predicting Fetal Birthweight from High Dimensional Data using Advanced Machine Learning
- Title(参考訳): 高度な機械学習を用いた高次元データからの胎児出生体重の予測
- Authors: Nachiket Kapure, Harsh Joshi, Rajeshwari Mistri, Parul Kumari, Manasi Mali, Seema Purohit, Neha Sharma, Mrityunjoy Panday, Chittaranjan S. Yajnik,
- Abstract要約: 出生体重は新生児の健康の基本的な指標であり、医療介入や長期の発達リスクと密接に関連している。
伝統的な予測モデルは、しばしば限られた特徴選択と不完全なデータセットによって制約され、複雑な母体と胎児の相互作用を見渡すのに苦労する。
本研究は,先進的な計算戦略を統合した構造化手法を用いて,これらの制約に対処するための機械学習について検討する。
- 参考スコア(独自算出の注目度): 1.489994236178479
- License:
- Abstract: Birth weight serves as a fundamental indicator of neonatal health, closely linked to both early medical interventions and long-term developmental risks. Traditional predictive models, often constrained by limited feature selection and incomplete datasets, struggle to achieve overlooking complex maternal and fetal interactions in diverse clinical settings. This research explores machine learning to address these limitations, utilizing a structured methodology that integrates advanced imputation strategies, supervised feature selection techniques, and predictive modeling. Given the constraints of the dataset, the research strengthens the role of data preprocessing in improving the model performance. Among the various methodologies explored, tree-based feature selection methods demonstrated superior capability in identifying the most relevant predictors, while ensemble-based regression models proved highly effective in capturing non-linear relationships and complex maternal-fetal interactions within the data. Beyond model performance, the study highlights the clinical significance of key physiological determinants, offering insights into maternal and fetal health factors that influence birth weight, offering insights that extend over statistical modeling. By bridging computational intelligence with perinatal research, this work underscores the transformative role of machine learning in enhancing predictive accuracy, refining risk assessment and informing data-driven decision-making in maternal and neonatal care. Keywords: Birth weight prediction, maternal-fetal health, MICE, BART, Gradient Boosting, neonatal outcomes, Clinipredictive.
- Abstract(参考訳): 出生体重は新生児の健康の基本的な指標であり、初期の医療介入と長期の発達リスクに密接に関連している。
伝統的な予測モデルは、しばしば限られた特徴選択と不完全なデータセットによって制約され、様々な臨床環境で複雑な母体と胎児の相互作用を見渡すのに苦労する。
本研究では,これらの制約に対処するための機械学習を探求し,高度な計算戦略を統合した構造化手法,教師付き特徴選択技術,予測モデリングを活用する。
データセットの制約を考慮すると、モデル性能を改善する上でのデータ前処理の役割が強化される。
検討した様々な手法の中で,木に基づく特徴選択法は最も関係のある予測因子の同定に優れた能力を示し,アンサンブルに基づく回帰モデルはデータ内の非線形関係や複雑な母子間相互作用を捉えるのに極めて有効であった。
モデル性能以外にも、この研究は重要な生理的決定因子の臨床的意義を強調し、出生体重に影響を与える母体および胎児の健康要因に関する洞察を提供し、統計モデルを超えて広がる洞察を提供する。
この研究は、周産期研究とコンピュータインテリジェンスをブリッジすることによって、予測精度の向上、リスク評価の精細化、母体と新生児のケアにおけるデータ駆動意思決定のインフォームにおける機械学習の変革的役割を浮き彫りにしている。
キーワード:出生体重予測、母性胎児の健康、MICE、BART、グラディエントブースティング、新生児の予後、Clinipredictive。
関連論文リスト
- Swin fMRI Transformer Predicts Early Neurodevelopmental Outcomes from Neonatal fMRI [0.20482269513546453]
この期間の発達結果の正確な予測は、遅延を特定し、タイムリーな介入を可能にするために不可欠である。
本研究では,新生児のfMRIを用いた結果の予測を目的としたSwiFT(Swin 4D fMRI Transformer)モデルを提案する。
分析の結果,SwiFTは認知,運動,言語結果の予測において,ベースラインモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-11-25T12:20:07Z) - Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
本稿では,臨床データを用いた心疾患のリスク予測における機械学習モデルの役割,関連性,効率性を理解し,評価し,分析する。
Support Vector Machine (SVM) は91.51%の精度を示し、予測能力の観点から評価されたモデル間にその優位性を確認している。
論文 参考訳(メタデータ) (2024-10-16T22:32:19Z) - Interpretable Predictive Models to Understand Risk Factors for Maternal
and Fetal Outcomes [17.457683367235536]
妊娠合併症の危険因子として, 重度の母性不妊症, 肩関節ジストシア, 妊娠前, 産科の4種類を同定し, 検討した。
我々は,ガラス箱の高精度な学習手法である説明可能なブースティングマシン(EBM)を用いて,重要な危険因子の予測と同定を行う。
論文 参考訳(メタデータ) (2023-10-16T09:17:10Z) - Unveiling the Unborn: Advancing Fetal Health Classification through Machine Learning [0.0]
本研究では,胎児の健康分類のための新しい機械学習手法を提案する。
提案したモデルでは、テストセットで98.31%の精度が得られる。
複数のデータポイントを組み込むことで、我々のモデルはより包括的で信頼性の高い評価を提供する。
論文 参考訳(メタデータ) (2023-09-30T22:02:51Z) - Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum
Disorder [9.544191399458954]
我々は、遺伝的、人口統計学的、神経画像データを組み合わせるためのより統合的なモデルを開発する。
表現型に対するジェノタイプの影響に触発されて,注意に基づくアプローチを提案する。
228ASDの性バランスデータセットを用いて,ASD分類と重度予測タスクに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-08-08T19:53:43Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Predicting Adverse Neonatal Outcomes for Preterm Neonates with
Multi-Task Learning [51.487856868285995]
われわれはまず, 3つの不良新生児結果の相関関係を解析し, マルチタスク学習(MTL)問題として複数の新生児結果の診断を定式化する。
特に、MTLフレームワークは、共有された隠れレイヤと複数のタスク固有のブランチを含んでいる。
論文 参考訳(メタデータ) (2023-03-28T00:44:06Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。