論文の概要: Swin fMRI Transformer Predicts Early Neurodevelopmental Outcomes from Neonatal fMRI
- arxiv url: http://arxiv.org/abs/2412.07783v3
- Date: Thu, 30 Jan 2025 10:33:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:12:18.947128
- Title: Swin fMRI Transformer Predicts Early Neurodevelopmental Outcomes from Neonatal fMRI
- Title(参考訳): マウスfMRIトランスフォーマーによる新生児fMRIの早期神経発達能の予測
- Authors: Patrick Styll, Dowon Kim, Jiook Cha,
- Abstract要約: この期間の発達結果の正確な予測は、遅延を特定し、タイムリーな介入を可能にするために不可欠である。
本研究では,新生児のfMRIを用いた結果の予測を目的としたSwiFT(Swin 4D fMRI Transformer)モデルを提案する。
分析の結果,SwiFTは認知,運動,言語結果の予測において,ベースラインモデルよりも有意に優れていた。
- 参考スコア(独自算出の注目度): 0.20482269513546453
- License:
- Abstract: Brain development in the first few months of human life is a critical phase characterized by rapid structural growth and functional organization. Accurately predicting developmental outcomes during this time is crucial for identifying delays and enabling timely interventions. This study introduces the SwiFT (Swin 4D fMRI Transformer) model, designed to predict Bayley-III composite scores using neonatal fMRI from the Developing Human Connectome Project (dHCP). To enhance predictive accuracy, we apply dimensionality reduction via group independent component analysis (ICA) and pretrain SwiFT on large adult fMRI datasets to address the challenges of limited neonatal data. Our analysis shows that SwiFT significantly outperforms baseline models in predicting cognitive, motor, and language outcomes, leveraging both single-label and multi-label prediction strategies. The model's attention-based architecture processes spatiotemporal data end-to-end, delivering superior predictive performance. Additionally, we use Integrated Gradients with Smoothgrad sQuare (IG-SQ) to interpret predictions, identifying neural spatial representations linked to early cognitive and behavioral development. These findings underscore the potential of Transformer models to advance neurodevelopmental research and clinical practice.
- Abstract(参考訳): 人間の生命の最初の数ヶ月における脳の発達は、急速な構造的成長と機能的組織を特徴とする重要な段階である。
この期間の発達結果の正確な予測は、遅延を特定し、タイムリーな介入を可能にするために不可欠である。
本研究では,発展型ヒトコネクトームプロジェクト(dHCP)の新生児fMRIを用いたベイリーIII合成スコアの予測を目的としたSwiFT(Swin 4D fMRI Transformer)モデルを提案する。
予測精度を高めるために,集団独立成分分析 (ICA) とSwiFT を大容量の成人fMRIデータセットに適用し,新生児データに制限のある課題に対処する。
分析の結果、SwiFTは認知、運動、言語の結果を予測するベースラインモデルよりも優れており、シングルラベルとマルチラベルの予測戦略が有効であることがわかった。
モデルの注意に基づくアーキテクチャプロセスは、時空間データのエンドツーエンドに分散し、優れた予測性能を提供する。
さらに、Smoothgrad sQuare(IG-SQ)と統合勾配を用いて予測を解釈し、初期認知と行動発達に関連する神経空間的表現を同定する。
これらの知見は、神経発達研究と臨床実践を進めるためのトランスフォーマーモデルの可能性を強調している。
関連論文リスト
- LoCI-DiffCom: Longitudinal Consistency-Informed Diffusion Model for 3D Infant Brain Image Completion [45.361733575664886]
乳児の脳画像補完のための新しい長周期インフォームド拡散モデルであるLoCI-DiffComを提案する。
提案手法は,コンテキスト認識の整合性を確保しつつ,個別化された発達特徴を抽出することができる。
論文 参考訳(メタデータ) (2024-05-17T10:53:40Z) - Cas-DiffCom: Cascaded diffusion model for infant longitudinal
super-resolution 3D medical image completion [47.83003164569194]
超高分解能・高分解能3次元乳児脳MRIにおける2段階拡散モデルCas-DiffComを提案する。
Cas-DiffCom は縦型乳幼児脳画像における個々の一貫性と高忠実度を両立することを確認した。
論文 参考訳(メタデータ) (2024-02-21T12:54:40Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Neurodevelopmental Phenotype Prediction: A State-of-the-Art Deep
Learning Model [0.0]
我々は,新生児の皮質表面データを解析するためにディープニューラルネットワークを適用した。
我々の目標は、神経発達のバイオマーカーを特定し、これらのバイオマーカーに基づいて出生時の妊娠年齢を予測することである。
論文 参考訳(メタデータ) (2022-11-16T11:15:23Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
機能的MRI(fMRI)によって導かれる自己神経変調タスクを行う個人のための個人表現を学習するためのディープニューラルネットワーク手法を提案する。
この表現は、直近のfMRIフレームが与えられた次のfMRIフレームにおける扁桃体活動を予測する自己教師型リカレントニューラルネットワークによって学習され、学習された個々の表現に条件付けされる。
論文 参考訳(メタデータ) (2021-12-06T10:16:54Z) - Variational voxelwise rs-fMRI representation learning: Evaluation of
sex, age, and neuropsychiatric signatures [0.0]
本稿では,Voxelwise rs-fMRIデータに非線形表現学習を適用することを提案する。
非線形表現の学習は変分オートエンコーダ(VAE)を用いて行われる
VAEは、voxelwise rs-fMRIデータに基づいて訓練され、意味のある情報を保持する非線形次元還元を行う。
論文 参考訳(メタデータ) (2021-08-29T05:27:32Z) - Towards human-level performance on automatic pose estimation of infant
spontaneous movements [2.7086496937827005]
4種類の畳み込みニューラルネットワークを訓練し、新しい幼児ポーズデータセットを用いて評価した。
最高のパフォーマンスのニューラルネットワークは、人間の専門家アノテーションのラッター間拡散に類似したローカライゼーションエラーを持っていた。
以上の結果から, 乳児の自発運動の評価は, 周産期脳損傷児の発達障害の早期発見に大きく貢献する可能性が示唆された。
論文 参考訳(メタデータ) (2020-10-12T18:17:47Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
うつ病の予測のために,ERHシーケンス上で双方向の表現学習を行うための時間的深層学習モデルを提案する。
このモデルでは, 曲線(PRAUC)下において, 最良ベースラインモデルと比較して, 抑うつ予測において0.70から0.76まで, 精度・リコール面積の最大値が得られた。
論文 参考訳(メタデータ) (2020-09-26T17:56:37Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。