論文の概要: A Collaborative Jade Recognition System for Mobile Devices Based on Lightweight and Large Models
- arxiv url: http://arxiv.org/abs/2502.14332v1
- Date: Thu, 20 Feb 2025 07:30:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:25.353812
- Title: A Collaborative Jade Recognition System for Mobile Devices Based on Lightweight and Large Models
- Title(参考訳): 軽量・大規模モデルに基づくモバイルデバイスの協調ジャド認識システム
- Authors: Zhenyu Wang, Wenjia Li, Pengyu Zhu,
- Abstract要約: 本稿では,サイズモデル協調に基づくジェイド認識システムを提案する。
スマートフォンなどのモバイルデバイスを用いて,効率的かつ正確なジェイド識別を実現することを目的としている。
- 参考スコア(独自算出の注目度): 4.889702940583927
- License:
- Abstract: With the widespread adoption and development of mobile devices, vision-based recognition applications have become a hot topic in research. Jade, as an important cultural heritage and artistic item, has significant applications in fields such as jewelry identification and cultural relic preservation. However, existing jade recognition systems still face challenges in mobile implementation, such as limited computing resources, real-time requirements, and accuracy issues. To address these challenges, this paper proposes a jade recognition system based on size model collaboration, aiming to achieve efficient and accurate jade identification using mobile devices such as smartphones.First, we design a size model based on multi-scale image processing, extracting key visual information by analyzing jade's dimensions, shapes, and surface textures. Then, a collaborative multi-model classification framework is built by combining deep learning and traditional computer vision algorithms. This framework can effectively select and adjust models based on different jade characteristics, providing high accuracy results across various environments and devices.Experimental results show that the proposed system can provide high recognition accuracy and fast processing time on mobile devices, while consuming relatively low computational resources. The system not only holds great application potential but also provides new ideas and technical support for the intelligent development of jade identification.
- Abstract(参考訳): モバイルデバイスの普及と開発により、視覚ベースの認識アプリケーションは研究においてホットな話題となっている。
ジャドは重要な文化遺産や芸術品として、宝石の識別や文化遺物保存などの分野で大きな応用がある。
しかし、既存のジャド認識システムは、限られたコンピューティングリソース、リアルタイム要求、精度の問題など、モバイル実装における課題に直面している。
これらの課題に対処するために,スマートフォンなどのモバイル端末を用いたジャド識別の効率化を目的としたサイズモデル協調に基づくジャド認識システムを提案し,まず,ジャドの寸法,形状,表面テクスチャを分析して,マルチスケール画像処理に基づくサイズモデルの設計を行う。
次に、ディープラーニングと従来のコンピュータビジョンアルゴリズムを組み合わせることで、協調的なマルチモデル分類フレームワークを構築する。
このフレームワークは, 異なるジェイド特性に基づいてモデルを効果的に選択・調整し, 各種環境, デバイス間で高精度な結果を与える。実験結果から, 比較的少ない計算資源を消費しながら, モバイルデバイス上で高い認識精度と高速な処理時間を提供できることが示された。
このシステムは、優れたアプリケーションの可能性を保持するだけでなく、新しいアイデアや技術サポートも提供し、ジャド識別のインテリジェントな開発に役立てる。
関連論文リスト
- Exploring Emerging Trends and Research Opportunities in Visual Place Recognition [28.76562316749074]
視覚に基づく認識は、コンピュータビジョンとロボティクスのコミュニティにおける長年の課題である。
ほとんどのローカライズ実装では、視覚的位置認識が不可欠である。
研究者は最近、視覚言語モデルに注意を向けている。
論文 参考訳(メタデータ) (2024-11-18T11:36:17Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Agile gesture recognition for low-power applications: customisation for generalisation [41.728933551492275]
自動手ジェスチャー認識は、長い間AIコミュニティの焦点だった。
低消費電力センサデバイスで動作するジェスチャー認識技術への需要が高まっている。
本研究では,適応的およびアジャイル的誤り訂正を用いたパターン認識システムのための新しい手法を提示する。
論文 参考訳(メタデータ) (2024-03-12T19:34:18Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Open Gaze: Open Source eye tracker for smartphone devices using Deep Learning [0.0]
本稿では,GooglePaperが提案する方法論をエミュレートした,スマートフォンベースのガウントラッカーのオープンソース実装について述べる。
機械学習技術の統合により、スマートフォンにネイティブな正確な視線追跡ソリューションを公開する。
本研究は眼球運動研究を顕著に増幅する本質的な可能性を示すものである。
論文 参考訳(メタデータ) (2023-08-25T17:10:22Z) - Challenges for Monocular 6D Object Pose Estimation in Robotics [12.037567673872662]
ロボット工学とコンピュータビジョンの両方から、最近の出版物について統一された視点を提供する。
我々は,オクルージョン処理,新しいポーズ表現,カテゴリーレベルのポーズ推定の形式化と改善が依然として基本的な課題であることがわかった。
これらの問題に対処するためには、オントロジ的推論、変形可能性処理、シーンレベルの推論、現実的なデータセット、アルゴリズムの生態的フットプリントを改善する必要がある。
論文 参考訳(メタデータ) (2023-07-22T21:36:57Z) - FarSight: A Physics-Driven Whole-Body Biometric System at Large Distance
and Altitude [67.55994773068191]
本稿ではFarSightの設計・開発・評価について述べる。
FarSightは、全身(顔、歩行、身体形状の融合)の生体認証のために設計された革新的なソフトウェアシステムである。
我々は、新たに取得したIARPAバイオメトリック認識とAltitude and Rangeデータセットによる同定を用いて、FarSightの有効性を検証した。
論文 参考訳(メタデータ) (2023-06-29T16:14:27Z) - Enable Deep Learning on Mobile Devices: Methods, Systems, and
Applications [46.97774949613859]
ディープニューラルネットワーク(DNN)は人工知能(AI)分野において前例のない成功を収めた
しかし、それらの優れた性能は、計算の複雑さのかなりのコストを伴っている。
本稿では,効率的なディープラーニング手法,システム,応用について概説する。
論文 参考訳(メタデータ) (2022-04-25T16:52:48Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Knowledge Distillation: A Survey [87.51063304509067]
ディープニューラルネットワークは、特にコンピュータビジョンタスクにおいて、産業と学術の両方で成功している。
リソースが限られているデバイスに、これらの面倒なディープモデルをデプロイすることは難しい。
知識蒸留は、大きな教師モデルから小さな学生モデルを効果的に学習する。
論文 参考訳(メタデータ) (2020-06-09T21:47:17Z) - A Robust Real-Time Computing-based Environment Sensing System for
Intelligent Vehicle [5.919822775295222]
低消費電力のモバイルプラットフォームをベースとしたリアルタイム運転支援システムを構築した。
このシステムは、ステレオマッチングアルゴリズムと機械学習に基づく障害物検出アプローチを組み合わせたリアルタイムマルチスキーマ統合イノベーションシステムである。
実験結果から,インテリジェントな車両に対して,堅牢で正確なリアルタイム環境認識を実現することができることがわかった。
論文 参考訳(メタデータ) (2020-01-27T10:47:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。