SegAnyPET: Universal Promptable Segmentation from Positron Emission Tomography Images
- URL: http://arxiv.org/abs/2502.14351v3
- Date: Tue, 01 Jul 2025 15:07:38 GMT
- Title: SegAnyPET: Universal Promptable Segmentation from Positron Emission Tomography Images
- Authors: Yichi Zhang, Le Xue, Wenbo Zhang, Lanlan Li, Yuchen Liu, Chen Jiang, Yuan Cheng, Yuan Qi,
- Abstract summary: We develop SegAnyPET, a modality-specific 3D foundation model for universal promptable segmentation from PET images.<n> Experimental results demonstrate that SegAnyPET can segment seen and unseen target organs using only one or a few prompt points.
- Score: 21.883098685700666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Positron Emission Tomography (PET) is a powerful molecular imaging tool that plays a crucial role in modern medical diagnostics by visualizing radio-tracer distribution to reveal physiological processes. Accurate organ segmentation from PET images is essential for comprehensive multi-systemic analysis of interactions between different organs and pathologies. Existing segmentation methods are limited by insufficient annotation data and varying levels of annotation, resulting in weak generalization ability and difficulty in clinical application. Recent developments in segmentation foundation models have shown superior versatility across diverse segmentation tasks. Despite the efforts of medical adaptations, these works primarily focus on structural medical images with detailed physiological structural information and exhibit limited generalization performance on molecular PET imaging. In this paper, we collect and construct PETS-5k, the largest PET segmentation dataset to date, comprising 5,731 three-dimensional whole-body PET images and encompassing over 1.3M 2D images. Based on the established dataset, we develop SegAnyPET, a modality-specific 3D foundation model for universal promptable segmentation from PET images. To issue the challenge of discrepant annotation quality, we adopt a cross prompting confident learning (CPCL) strategy with an uncertainty-guided self-rectification process to robustly learn segmentation from high-quality labeled data and low-quality noisy labeled data for promptable segmentation. Experimental results demonstrate that SegAnyPET can segment seen and unseen target organs using only one or a few prompt points, outperforming state-of-the-art foundation models and task-specific fully supervised models with higher accuracy and strong generalization ability for universal segmentation.
Related papers
- PET2Rep: Towards Vision-Language Model-Drived Automated Radiology Report Generation for Positron Emission Tomography [24.091435019102587]
Radiology reports are essential for clinical decision making, yet their manual creation is labor-intensive and time-consuming.<n>Recent advancements of vision-language models (VLMs) have shown strong potential in medical applications.<n>We introduce PET2Rep, a benchmark for evaluation of general and medical VLMs for radiology report generation for PET images.
arXiv Detail & Related papers (2025-08-06T03:46:51Z) - Personalized MR-Informed Diffusion Models for 3D PET Image Reconstruction [44.89560992517543]
We propose a simple method for generating subject-specific PET images from a dataset of PET-MR scans.<n>The images we synthesize retain information from the subject's MR scan, leading to higher resolution and the retention of anatomical features.<n>With simulated and real [$18$F]FDG datasets, we show that pre-training a personalized diffusion model with subject-specific "pseudo-PET" images improves reconstruction accuracy with low-count data.
arXiv Detail & Related papers (2025-06-04T10:24:14Z) - The Efficacy of Semantics-Preserving Transformations in Self-Supervised Learning for Medical Ultrasound [60.80780313225093]
This study systematically investigated the impact of data augmentation and preprocessing strategies in self-supervised learning for lung ultrasound.
Three data augmentation pipelines were assessed: a baseline pipeline commonly used across imaging domains, a novel semantic-preserving pipeline designed for ultrasound, and a distilled set of the most effective transformations from both pipelines.
arXiv Detail & Related papers (2025-04-10T16:26:47Z) - Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images [29.523577037519985]
Deep learning models are expected to address problems such as poor image quality, motion artifacts, and complex tumor morphology.
We introduce a large-scale PET-CT lung tumor segmentation dataset, termed PCLT20K, which comprises 21,930 pairs of PET-CT images from 605 patients.
We propose a cross-modal interactive perception network with Mamba (CIPA) for lung tumor segmentation in PET-CT images.
arXiv Detail & Related papers (2025-03-21T16:04:11Z) - Adaptive Whole-Body PET Image Denoising Using 3D Diffusion Models with ControlNet [3.83243615095535]
Current deep learning-based denoising methods face challenges in adapting to the variability of clinical settings.
We propose a novel 3D ControlNet-based denoising method for whole-body PET imaging.
arXiv Detail & Related papers (2024-11-08T03:06:47Z) - AutoPET III Challenge: Tumor Lesion Segmentation using ResEnc-Model Ensemble [1.3467243219009812]
We trained a 3D Residual encoder U-Net within the no new U-Net framework to generalize the performance of automatic lesion segmentation.
We leveraged test-time augmentations and other post-processing techniques to enhance tumor lesion segmentation.
Our team currently hold the top position in the Auto-PET III challenge and outperformed the challenge baseline model in the preliminary test set with Dice score of 0.9627.
arXiv Detail & Related papers (2024-09-19T20:18:39Z) - Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
The autoPET III Challenge focuses on advancing automated segmentation of tumor lesions in PET/CT images.
We developed a classifier that identifies the tracer of the given PET/CT based on the Maximum Intensity Projection of the PET scan.
Our final submission achieves cross-validation Dice scores of 76.90% and 61.33% for the publicly available FDG and PSMA datasets.
arXiv Detail & Related papers (2024-09-18T17:16:57Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
We design a novel two-phase multi-dose-level PET reconstruction algorithm with dose level awareness.
The pre-training phase is devised to explore both fine-grained discriminative features and effective semantic representation.
The SPET prediction phase adopts a coarse prediction network utilizing pre-learned dose level prior to generate preliminary result.
arXiv Detail & Related papers (2024-04-02T01:57:08Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Image2Points:A 3D Point-based Context Clusters GAN for High-Quality PET
Image Reconstruction [47.398304117228584]
We propose a 3D point-based context clusters GAN, namely PCC-GAN, to reconstruct high-quality SPET images from LPET.
Experiments on both clinical and phantom datasets demonstrate that our PCC-GAN outperforms the state-of-the-art reconstruction methods.
arXiv Detail & Related papers (2024-02-01T06:47:56Z) - Score-Based Generative Models for PET Image Reconstruction [38.72868748574543]
We propose several PET-specific adaptations of score-based generative models.
The proposed framework is developed for both 2D and 3D PET.
In addition, we provide an extension to guided reconstruction using magnetic resonance images.
arXiv Detail & Related papers (2023-08-27T19:43:43Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Spatio-Temporal Dual-Stream Neural Network for Sequential Whole-Body PET
Segmentation [10.344707825773252]
We propose a 'dual-stream' neural network (ST-DSNN) to segment sequential whole-body PET scans.
Our ST-DSNN learns and accumulates image features from the PET images done over time.
Our results show that our method outperforms the state-of-the-art PET image segmentation methods.
arXiv Detail & Related papers (2021-06-09T10:15:20Z) - Evidential segmentation of 3D PET/CT images [20.65495780362289]
A segmentation method based on belief functions is proposed to segment lymphomas in 3D PET/CT images.
The architecture is composed of a feature extraction module and an evidential segmentation (ES) module.
The method was evaluated on a database of 173 patients with diffuse large b-cell lymphoma.
arXiv Detail & Related papers (2021-04-27T16:06:27Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.