論文の概要: Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2502.14361v1
- Date: Thu, 20 Feb 2025 08:40:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:27.256144
- Title: Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning
- Title(参考訳): 一般化可能な数学的推論のための検索強化プロセスリワードモデル
- Authors: Jiachen Zhu, Congmin Zheng, Jianghao Lin, Kounianhua Du, Ying Wen, Yong Yu, Jun Wang, Weinan Zhang,
- Abstract要約: 本稿では,OOD問題に対処するための新しいフレームワークであるRetrieval-Augmented Process Reward Model(RetrievalPRM)を紹介する。
RetrievalPRMは2段階の検索強化機構を利用して、セマンティックに類似した質問やステップをウォームアップとして検索する。
我々の実験では、RetrievalPRMは複数の実世界のデータセットで既存のベースラインを上回ります。
- 参考スコア(独自算出の注目度): 32.850036320802474
- License:
- Abstract: While large language models (LLMs) have significantly advanced mathematical reasoning, Process Reward Models (PRMs) have been developed to evaluate the logical validity of reasoning steps. However, PRMs still struggle with out-of-distribution (OOD) challenges. This paper identifies key OOD issues, including step OOD, caused by differences in reasoning patterns across model types and sizes, and question OOD, which arises from dataset shifts between training data and real-world problems. To address these issues, we introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle these OOD issues. By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps as a warmup, enhancing PRM's ability to evaluate target steps and improving generalization and reasoning consistency across different models and problem types. Our extensive experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets. Our open-source contributions include a retrieval-enhanced dataset, a tuning framework for PRM training, and the RetrievalPRM model, establishing a new standard for PRM performance.
- Abstract(参考訳): 大規模言語モデル(LLM)は数学的推論が大幅に進歩する一方で,プロセス・リワード・モデル(PRM)は推論ステップの論理的妥当性を評価するために開発された。
しかしながら、PRMは相変わらず、アウト・オブ・ディストリビューション(OOD)の課題に悩まされている。
本稿では、モデルタイプとサイズの違いによる推論パターンの違いに起因するステップOODや、トレーニングデータと実世界の問題のデータセットシフトから生じる質問OODなど、主要なOOD問題を特定する。
これらの問題に対処するために、我々はこれらのOOD問題に対処するために設計された新しいフレームワークであるRetrieval-Augmented Process Reward Model (RetrievalPRM)を紹介する。
RetrievalPRMは、2段階の検索強化機構を利用して、セマンティックに類似した質問やステップをウォームアップとして検索し、ターゲットステップの評価能力を高め、異なるモデルや問題タイプ間での一般化と推論の整合性を改善する。
大規模な実験により、RetrievalPRMは複数の実世界のデータセットで既存のベースラインを上回ります。
私たちのオープンソースコントリビューションには、検索強化データセット、PRMトレーニングのためのチューニングフレームワーク、RetrievalPRMモデルが含まれており、PRMパフォーマンスの新しい標準を確立しています。
関連論文リスト
- Reward Models Identify Consistency, Not Causality [54.987590763737145]
最先端の報酬モデルでは、因果正しさよりも構造的な一貫性が優先される。
問題文の削除は報酬のスコアに最小限の影響を与える。
数値を変更するか、推論フローを乱すかは、RM出力に大きく影響する。
論文 参考訳(メタデータ) (2025-02-20T14:57:14Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
ReARTeR(Retrieval-Augmented Reasoning)を提案する。
ReARTeRは、ポストトレーニングとテストタイムスケーリングを通じて、RAGシステムの推論能力を向上する。
マルチステップ推論ベンチマークの実験結果から,大幅な改善が示された。
論文 参考訳(メタデータ) (2025-01-14T05:56:26Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRM) は、推論プロセスにおける中間エラーを特定し、緩和することを目的としている。
我々は,モンテカルロ (MC) 推定とLarge Language Models (LLM) を効果的に統合するコンセンサスフィルタリング機構を開発した。
私たちは、既存のオープンソース代替品よりも優れた、最先端のPRMを新たにリリースしています。
論文 参考訳(メタデータ) (2025-01-13T13:10:16Z) - PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models [28.74956741932006]
PRMベンチ(PRM Bench)は, PRMの微細な誤差検出機能を評価するための, プロセスレベルのベンチマークである。
PRMBenchは、6,216の慎重に設計された問題と83,456のステップレベルラベルで構成され、複数の次元にわたるモデルを評価する。
論文 参考訳(メタデータ) (2025-01-06T16:31:45Z) - Process Reward Model with Q-Value Rankings [18.907163177605607]
プロセス・リワード・モデリング(PRM)は複雑な推論と意思決定に不可欠である。
本稿では,マルコフ決定プロセスの文脈でPRMを再定義する新しいフレームワークであるProcess Q-value Model(PQM)を紹介する。
PQMは、新しい比較損失関数に基づいてQ値ランキングを最適化し、シーケンシャルな決定の中で複雑なダイナミクスをキャプチャするモデルの能力を向上する。
論文 参考訳(メタデータ) (2024-10-15T05:10:34Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
本稿では,未ラベルデータを用いたRMトレーニングを強化する手法であるSemi-Supervised Reward Modeling (SSRM)を提案する。
SSRMは、追加のラベリングコストを発生させることなく、報酬モデルを大幅に改善することを示した。
全体として、SSRMは、人間が注釈付けした大量のデータへの依存を大幅に減らし、効果的な報酬モデルのトレーニングに要する全体的なコストと時間を削減する。
論文 参考訳(メタデータ) (2024-09-10T22:57:58Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。